A spanning Bipartite Quadrangulation of a Triangulation Kenta Ozeki (Yokohama National University, Japan) Joint work with

A. Nakamoto (YNU), and K. Noguchi (Tokyo U. of Science)

Spanning bipartite quadrangulation

- (folklore) G : triangulation (of any surface)
 - \exists 4-coloring in G
 - $\Leftrightarrow \exists 2 \text{ spanning bipartite quadrangulations covering } E(G)$

Find a <u>sp. bip. quad.</u> in triangulations

Spanning bipartite quadrangulationProp.Bipartite or non-bipartite?G : triangulation of a surface $\Rightarrow \exists$ a spanning quadragulation

G : triangulation

The dual G^* has a perfect matching

Any PM gives

a sp. quad. of G

Note: Any quadrangulation of the plane is bipartite.

What about the case of non-spherical surfaces?

17th August, 2018

Spanning bipartite quadrangulation

The general cases seem difficult.

 \rightarrow Our target :

Eulerian triangulation

 $(\forall vertex has even degree)$

Not all (Eulerian) triangulations have a sp. bip. quadrangulation

17th August, 2018

 \checkmark K_7 on the torus has NO sp. bip. quadrangulation

 $\therefore K_7$ on the torus has 7 vertices,

21 edges, and 14 faces

To obtain a sp. bip. quad., we delete exactly 14/2 = 7 edges

But, $\not\exists$ bip. graph on 7 vertices and 21 - 7 = 14 edges.

 \checkmark K_7 on the torus has NO sp. bip. quadrangulation

<u>Main Thm.</u>

G: Eulerian triangulation of the torus

 \exists a sp. bip. quadrangulation in G

 \Leftrightarrow G does NOT have K_7 as a subgraph

✓ Kundgen & Thomassen (`17) gave a weaker sufficient condition

✓ Later, I will show an idea of the proof.

The existence of sp. bip. quad.

✓ Eulerian triangulation

Plane	Torus	
0	$\bigcirc \Leftrightarrow^{\not\exists} K_7$	

17th August, 2018

Main Thm. 2

G: Eulerian triangulation of the projective plane $\Rightarrow \exists$ a sp. bip. quadrangulation in G

Furthermore, if G: 3-colorable,

 \Rightarrow ALL sp. quadrangulations in G are bipartite

Kundgen & Thomassen (`17) proved the same,
 but our proof is shorter

Main Thm. 2

G: Eulerian triangulation of the projective plane

 $\Rightarrow \exists$ a sp. bip. quadrangulation in G

(Mohar `02)

 \forall Eulerian triangulation of the projective plane is the face subdivision of an <u>even embedding</u>

 \forall facial cycle is even length

Main Thm. 2

- G: Eulerian triangulation of the projective plane
 - $\Rightarrow \exists$ a sp. bip. quadrangulation in G

- . (Mohar `02)
 - \forall Eulerian triangulation of the projective plane is the face subdivision of an <u>even embedding</u>

 \forall facial cycle is even length

Delete all edges in the even embedding

Main Thm. 2

- G : Eulerian triangulation of the projective plane If G : 3-colorable,
 - \Rightarrow ALL sp. quadrangulations in G are bipartite
- (Youngs `96)

 \forall quadrangulation of the projective plane is

either bipartite or non-3-colorable (3-chromatic is impossible)

If G : 3-colorable, then all sp. quad.s are 3-colorable, so bipartite \Box

Main Thm. 2

G: Eulerian triangulation of the projective plane $\Rightarrow \exists$ a sp. bip. quadrangulation in G

Furthermore, if G: 3-colorable,

 \Rightarrow ALL sp. quadrangulations in G are bipartite

Kundgen & Thomassen (`17) proved the same,
 but our proof is shorter

The existence of sp. bip. quad.

Eulerian triangulation

Plane	Torus	Projective plane	
0	$\bigcirc \Leftrightarrow^{\not\exists} K_7$	Ο	

The case of other surfaces

Main Thm. 3

G: Eulerian triangulation of non-spherical surface

If edge-width of G is large enough,

 $\Rightarrow \exists$ a sp. bip. quadrangulation in G

Edge-width : the length of shortest essential cycle

Shown by using the following result;

(Hutchinson, Richter, and Seymour `02)

(Archdeacon, Hutchinson, Nakamoto, Negami, and Ota `99)

 \forall Eulerian triangulation G with large edge-width is 4-colorable, unless G is the face subdivision of an even embedding

The existence of sp. bip. quad.

Eulerian triangulation

Plane	Torus	Projective plane	Others
Ο	$\bigcirc \Leftrightarrow^{\not\exists} K_7$	Ο	O if edge-width large

✓ General triangulation

G: Eulerian triangulation of the torus

 \exists a sp. bip. quadrangulation in G

 \Leftrightarrow G does NOT have K_7 as a subgraph

 \checkmark \Leftarrow is an easy part, while we need some arguments

 \checkmark \Rightarrow is the main part

✓ Use generating thm., allowing multiple edges

Thm. (Matsumoto, Nakamoto, and Yamaguchi, `18)

∀ Eulerian multi-triangulation of the torus
is generated from 27 base graphs or 6-regular ones
by a sequence of 4-splittings and 2-vertex additions

4-splittings and 2-vertex-addition

17th August, 2018

27 base graphs

6-regular triangulations

Thm. (Altschuler, `73)

 \forall 6-reguler multi-triangulation of the torus

is represented as follows:

(Yeh and Zhu, `03)

Characterize by p, q, r,

all non-4-colorable

triangulations on the torus

Main Thm.

G: Eulerian triangulation of the torus

G does NOT have K_7 as a subgraph $\Rightarrow \exists$ a sp. bip. quad. in G

Thm. (Matsumoto, Nakamoto, and Yamaguchi, `18)

 \forall Eulerian multi-triangulation of the torus

is generated from 27 base graphs or 6-regular ones

by a sequence of 4-splittings and 2-vertex additions

Main Thm.

G: Eulerian triangulation of the torus G does NOT have K_7 as a subgraph $\Rightarrow \exists$ a sp. bip. quad. in G

- ✓ Show that for all the 27 base graphs and 6-regular ones.
- Suppose *H*' is obtained from a triangulation *H* by 4-splitting and 2-vertex addition. Then show that
 - > If H has a sp. bip. quad., then so is H'.
 - > If H has K_7 as a subgraph,

then either so does H' or H' has a sp. bip. quad.

The existence of sp. bip. quad.

Eulerian triangulation

Plane	Torus	Projective plane	Others
Ο	$\bigcirc \Leftrightarrow^{\not\exists} K_7$	Ο	O if edge-width large

✓ General triangulation

17th August, 2018

The existence of sp. bip. quad.

Eulerian triangulation

Plane	Torus	Projective plane	Others
0	$\bigcirc \Leftrightarrow^{\not\exists} K_7$	Ο	O if edge-width large

For the existence of sp. NON-bip. quadrangulation

Plane	Torus	Projective plane	Others
×	0	$\bigcirc \Leftrightarrow \frac{\text{Not}}{3\text{-colorable}}$	• if edge-width large

Thank you for your attention

