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Combinatorial reconfiguration
Combinatorial reconfiguration is an algorithmic concept that provide 
mathematical models and analysis for “transformations over state spaces”.
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Combinatorial reconfiguration
Combinatorial reconfiguration is an algorithmic concept that provide 
mathematical models and analysis for “transformations over state spaces”.

Object : 15-puzzle
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Operation : Sliding tiles

Object : Graph Coloring

Operation : Kempe change Kempe change

Reachability problem: For two inputs, we are asked to determine whether or 
not we can transform one into the other by a prescribed operation.   

Sliding a tile
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Edge-colored graph and rainbow

 An edge-colored graph is a graph with an edge coloring (not necessarily 
proper coloring).

Definition (edge-colored graph and rainbow)

 An edge-colored graph is rainbow if no two edges have the same color.

Rainbow
Edges in the same color 
may share an end-vertex
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Object : Edge-colored multigraph  Operation : Edge flip
Rule : All intermediate results remain rainbow spanning trees 
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Rainbow spanning tree reconfiguration
Object : Edge-colored multigraph  Operation : Edge flip
Rule : All intermediate results remain rainbow spanning trees 

Edge flip

Definition (Rainbow spanning tree reconfiguration)

𝑇, 𝑇′ : Rainbow spanning trees of an edge-colored multigraph 𝐺
A reconfiguration sequence between 𝑇 and 𝑇′ is a sequence of rainbow spanning 
trees (𝑇0, 𝑇1, … , 𝑇𝑘) in 𝐺 with 𝑇0 = 𝑇 and 𝑇𝑘 = 𝑇′ s.t.
𝑇𝑖+1 is obtained from 𝑇𝑖 by edge flip i.e. 𝑇𝑖+1 = 𝑇𝑖 − 𝑒 + 𝑓.



Rainbow spanning tree reconfiguration

Edge flip

Definition (Rainbow spanning tree reconfiguration)

𝑇, 𝑇′ : Rainbow spanning trees of an edge-colored multigraph 𝐺
A reconfiguration sequence between 𝑇 and 𝑇′ is a sequence of rainbow spanning 
trees (𝑇0, 𝑇1, … , 𝑇𝑘) in 𝐺 with 𝑇0 = 𝑇 and 𝑇𝑘 = 𝑇′ s.t.
𝑇𝑖+1 is obtained from 𝑇𝑖 by edge flip i.e. 𝑇𝑖+1 = 𝑇𝑖 − 𝑒 + 𝑓.

Problem (Rainbow spanning tree reconfiguration problem)

Is there a polynomial-time algorithm for the following decision problem?
Input : edge colored multigraph 𝐺, rainbow spanning trees 𝑇, 𝑇′ of 𝐺
Output : whether there is a reconfiguration sequence between 𝑇 and 𝑇′

What are conditions for 𝐺 to 
always result in “yes”?
How about reconfiguration graph?



Special edge-colored graph
ℋ𝑛 : the set of edge-colored graphs with 𝑛 vertices satisfying that edges colored 
with a color 𝑐 induce a connected spanning graph for each color 𝑐 in the graph

⊆ ℋ4 ∉ ℋ4



ℋ𝑛 : the set of edge-colored graphs with 𝑛 vertices satisfying that edges colored 
with a color 𝑐 induce a connected spanning graph for each color 𝑐 in the graph 

⊆ ℋ4 ∉ ℋ4

Is there reconf. sequence between any two rainbow spanning trees in 𝐺 ∈ ℋ𝑛?

⇒No

Number of colors is too few…

Special edge-colored graph



ℋ𝑛 : the set of edge-colored graphs with 𝑛 vertices satisfying that edges colored 
with a color 𝑐 induce a connected spanning graph for each color 𝑐 in the graph 

⊆ ℋ4 ∉ ℋ4

Theorem 1 (M and Yamaguchi)

For any two rainbow spanning trees in an edge-colored graph 𝐺 ∈ ℋ𝑛 having at 
least 𝑛 colors, there is a reconfiguration sequence between them and the length of 

the sequence is at most 
3

2
(𝑛 − 1).

The bound is tight.
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ℋ𝑛 : the set of edge-colored graphs with 𝑛 vertices satisfying that edges colored 
with a color 𝑐 induce a connected spanning graph for each color 𝑐 in the graph 
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Theorem 1 (M and Yamaguchi)

For any two rainbow spanning trees in an edge-colored graph 𝐺 ∈ ℋ𝑛 having at 
least 𝑛 colors, there is a reconfiguration sequence between them and the length of 

the sequence is at most 
3

2
(𝑛 − 1).

The bound is tight.

𝐺 = ∪
⋯
𝐺1

𝑣
𝑛 (odd) : number of vertices of 𝐺

⋯

𝑣

⋯

𝑣

𝑇 𝑇′

⋯
𝐺2

𝑣

⋯
𝐺𝑛−2

𝑣

⋯
𝐺𝑛−1

𝑣

⋯
𝐺𝑛

𝑣

∪ ∪ ∪ ∪⋯

The bound is tight.



Reconfiguration graphs

For an edge-colored multigraph 𝐺, the reconfiguration graph 𝒢 𝐺 induced by rainbow 
spanning trees of 𝐺 as follows:

𝑉 𝒢 𝐺 = 𝑇 ∶ 𝑟𝑎𝑖𝑛𝑏𝑜𝑤 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑟𝑒𝑒 𝑇 𝑖𝑛 𝐺 ,
two rainbow spanning trees are adjacent in 𝒢 𝐺 ⇔
one is obtained from the other by exchanging a single edge.

Definition (Reconfiguration graph induced by rainbow spanning trees)

𝐺 𝒢 𝐺



Reconfiguration graphs

Theorem 1 (rephrase)

For an edge-colored graph 𝐺 ∈ ℋ𝑛 having at least 𝑛 colors, the diameter of 𝒢 𝐺 is at most 
3

2
(𝑛 − 1).

What other properties might the reconfiguration graphs have?

For an edge-colored multigraph 𝐺, the reconfiguration graph 𝒢 𝐺 induced by rainbow 
spanning trees of 𝐺 as follows:

𝑉 𝒢 𝐺 = 𝑇 ∶ 𝑟𝑎𝑖𝑛𝑏𝑜𝑤 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑟𝑒𝑒 𝑇 𝑖𝑛 𝐺 ,
two rainbow spanning trees are adjacent in 𝒢 𝐺 ⇔
one is obtained from the other by exchanging a single edge.

Definition (Reconfiguration graph induced by rainbow spanning trees)



Reconfiguration graphs

For a multigraph 𝐺, the reconfiguration graph 𝒢′ 𝐺 induced by spanning trees of 𝐺 as 
follows:

𝑉 𝒢′ 𝐺 = 𝑇 ∶ 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑟𝑒𝑒 𝑇 𝑖𝑛 𝐺 ,
two spanning trees are adjacent in 𝒢′ 𝐺 ⇔
one is obtained from the other by exchanging a single edge.

Definition (Reconfiguration graph induced by spanning trees)

For an edge-colored multigraph 𝐺, the reconfiguration graph 𝒢 𝐺 induced by rainbow 
spanning trees of 𝐺 as follows:

𝑉 𝒢 𝐺 = 𝑇 ∶ 𝑟𝑎𝑖𝑛𝑏𝑜𝑤 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑟𝑒𝑒 𝑇 𝑖𝑛 𝐺 ,
two rainbow spanning trees are adjacent in 𝒢 𝐺 ⇔
one is obtained from the other by exchanging a single edge.

Definition (Reconfiguration graph induced by rainbow spanning trees)

Theorem A (Holzmann and Harary, 1972)

For a multigraph 𝐺, 𝒢′ 𝐺 is hamiltonian.



Reconfiguration graphs
Theorem A (Holzmann and Harary, 1972)

For a multigraph 𝐺, 𝒢′ 𝐺 is hamiltonian.

Problem 1

For any edge-colored multigraph 𝐺 ∈ ℋ𝑛 having at least 𝑛(≥ 3) colors, is 𝒢 𝐺 hamiltonian?

Theorem 2 (M and Yamaguchi)

For any edge-colored multigraph 𝐺 ∈ ℋ𝑛 having at least 𝑛 colors, 𝒢 𝐺 is 2-connected.

Problem 2

For any edge-colored multigraph 𝐺 ∈ ℋ𝑛 having at least 𝑛 colors, is 𝒢 𝐺 1-tough?



Conclusion

Problem 1

For any edge-colored multigraph 𝐺 ∈ ℋ𝑛 having at least 𝑛 colors, is 𝒢 𝐺 hamiltonian?

Theorem 2 (M and Yamaguchi)

For any edge-colored multigraph 𝐺 ∈ ℋ𝑛 having at least 𝑛 colors, 𝒢 𝐺 is 2-connected.

Problem 2

For any edge-colored multigraph 𝐺 ∈ ℋ𝑛 having at least 𝑛 colors, is 𝒢 𝐺 1-tough?

Theorem 1 (rephrase)

For an edge-colored graph 𝐺 ∈ ℋ𝑛having at least 𝑛 colors, the diameter of 𝒢 𝐺 is at most 
3

2
(𝑛 − 1).

Thank you very much!!
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