Reconfiguration graphs induced by rainbow spanning trees <u>Shun-ichi Maezawa</u> (Nihon University)

Joint work with Yutaro Yamaguchi (Osaka University)

November 22,2024 Graphternoon @ Ghent University

Combinatorial reconfiguration is an algorithmic concept that provide mathematical models and analysis for "transformations over state spaces".

Combinatorial reconfiguration is an algorithmic concept that provide mathematical models and analysis for "transformations over state spaces".

Object : 15-puzzle Operation : Sliding tiles

Combinatorial reconfiguration is an algorithmic concept that provide mathematical models and analysis for "transformations over state spaces".

Object : 15-puzzle Operation : Sliding tiles

Object : Graph Coloring Operation : Kempe change

Combinatorial reconfiguration is an algorithmic concept that provide mathematical models and analysis for "transformations over state spaces".

Object : 15-puzzle Operation : Sliding tiles

Object : Graph Coloring Operation : Kempe change

Reachability problem: For two inputs, we are asked to determine whether or not we can transform one into the other by a prescribed operation.

Edge-colored graph and rainbow

Definition (edge-colored graph and rainbow)

- An edge-colored graph is a graph with an edge coloring (not necessarily proper coloring).
- An edge-colored graph is **rainbow** if no two edges have the same color.

Object : Edge-colored multigraphOperation : Edge flipRule : All intermediate results remain rainbow spanning trees

Definition (Rainbow spanning tree reconfiguration)

T,T': Rainbow spanning trees of an edge-colored multigraph GA **reconfiguration sequence** between T and T' is a sequence of rainbow spanning trees $(T_0, T_1, ..., T_k)$ in G with $T_0 = T$ and $T_k = T'$ s.t. T_{i+1} is obtained from T_i by edge flip i.e. $T_{i+1} = T_i - e + f$.

Definition (Rainbow spanning tree reconfiguration) T, T': Rainbow spanning trees of an edge-colored multigraph *G* A **reconfiguration sequence** between *T* and *T'* is a sequence of rainbow spanning trees $(T_0, T_1, ..., T_k)$ in *G* with $T_0 = T$ and $T_k = T'$ s.t. T_{i+1} is obtained from T_i by edge flip i.e. $T_{i+1} = T_i - e + f$.

What are conditions for *G* to always result in "yes"?

Problem (Rainbow spanning tree reconfiguration problem) \checkmark How about reconfiguration graph? Is there a polynomial-time algorithm for the following decision problem? Input : edge colored multigraph *G*, rainbow spanning trees *T*,*T*' of *G* Output : whether there is a reconfiguration sequence between *T* and *T*'

Special edge-colored graph

 \mathcal{H}_n : the set of edge-colored graphs with n vertices satisfying that edges colored with a color c induce a connected spanning graph for each color c in the graph

Special edge-colored graph

 \mathcal{H}_n : the set of edge-colored graphs with n vertices satisfying that edges colored with a color c induce a connected spanning graph for each color c in the graph

Is there reconf. sequence between any two rainbow spanning trees in $G \in \mathcal{H}_n$? $\Rightarrow No$

Number of colors is too few \cdots

Special edge-colored graph

 \mathcal{H}_n : the set of edge-colored graphs with n vertices satisfying that edges colored with a color c induce a connected spanning graph for each color c in the graph

The bound is tight.

Theorem 1 (M and Yamaguchi)

For any two rainbow spanning trees in an edge-colored graph $G \in \mathcal{H}_n$ having at least n colors, there is a reconfiguration sequence between them and the length of the sequence is at most $\frac{3}{2}(n-1)$.

Definition (Reconfiguration graph induced by rainbow spanning trees) For an edge-colored multigraph G, the reconfiguration graph G(G) induced by rainbow spanning trees of G as follows:

 $V(\mathcal{G}(G)) = \{T : rainbow spanning tree T in G\},\$

two rainbow spanning trees are adjacent in $\mathcal{G}(G) \Leftrightarrow$ one is obtained from the other by exchanging a single edge.

Definition (Reconfiguration graph induced by rainbow spanning trees) For an edge-colored multigraph G, the reconfiguration graph G(G) induced by rainbow spanning trees of G as follows:

 $V(\mathcal{G}(G)) = \{T : rainbow spanning tree T in G\},\$

two rainbow spanning trees are adjacent in $\mathcal{G}(G) \Leftrightarrow$ one is obtained from the other by exchanging a single edge.

Theorem 1 (rephrase) For an edge-colored graph $G \in \mathcal{H}_n$ having at least n colors, the diameter of $\mathcal{G}(G)$ is at most $\frac{3}{2}(n-1)$.

What other properties might the reconfiguration graphs have?

Definition (Reconfiguration graph induced by rainbow spanning trees) For an edge-colored multigraph G, the reconfiguration graph G(G) induced by rainbow spanning trees of G as follows:

 $V(\mathcal{G}(G)) = \{T : rainbow spanning tree T in G\},\$

two rainbow spanning trees are adjacent in $\mathcal{G}(G) \Leftrightarrow$ one is obtained from the other by exchanging a single edge.

Definition (Reconfiguration graph induced by spanning trees) For a multigraph *G*, the reconfiguration graph G'(G) induced by spanning trees of *G* as follows:

 $V(G'(G)) = \{T : spanning tree T in G\},\$

two spanning trees are adjacent in $\mathcal{G}'(G) \Leftrightarrow$ one is obtained from the other by exchanging a single edge.

Theorem A (Holzmann and Harary, 1972) For a multigraph G, G'(G) is hamiltonian.

Theorem A (Holzmann and Harary, 1972)

For a multigraph G, G'(G) is hamiltonian.

Problem 1

For any edge-colored multigraph $G \in \mathcal{H}_n$ having at least $n \geq 3$ colors, is $\mathcal{G}(G)$ hamiltonian?

Theorem 2 (M and Yamaguchi)

For any edge-colored multigraph $G \in \mathcal{H}_n$ having at least *n* colors, $\mathcal{G}(G)$ is 2-connected.

Problem 2

For any edge-colored multigraph $G \in \mathcal{H}_n$ having at least *n* colors, is $\mathcal{G}(G)$ 1-tough?

Conclusion Thank you very much!!

Theorem 1 (rephrase)

For an edge-colored graph $G \in \mathcal{H}_n$ having at least n colors, the diameter of $\mathcal{G}(G)$ is at most $\frac{3}{2}(n-1)$.

Theorem 2 (M and Yamaguchi)

For any edge-colored multigraph $G \in \mathcal{H}_n$ having at least *n* colors, $\mathcal{G}(G)$ is 2-connected.

Problem 1

For any edge-colored multigraph $G \in \mathcal{H}_n$ having at least *n* colors, is $\mathcal{G}(G)$ hamiltonian?

Problem 2

For any edge-colored multigraph $G \in \mathcal{H}_n$ having at least *n* colors, is $\mathcal{G}(G)$ 1-tough?