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Cospectral mates

Definition.
Graphs with the same spectrum are cospectral.
Cospectral nonisomorphic graphs are cospectral mates.

Definition.

A graph is determined by its spectrum (DS) if it has no
cospectral mate. Otherwise, we say that it is not determined by
its spectrum (NDS).
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Conjecture (Haemers).
Almost all graphs are determined by their spectrum.
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» Interesting for complexity theory

Figure: Is graph isomorphism an easy problem? Is it NP-complete?



Cospectral mates

Conjecture (Haemers).
Almost all graphs are determined by their spectrum.

» Computational evidence (Brouwer and Spence, 2009)
» Interesting for complexity theory
» Interesting for chemistry
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Figure: The molecular graph of acetaldehyde (ethanal).
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How to find cospectral graphs

Theorem (Godsil and McKay, 1982).
Let I' be a graph with a subgraph C such that:

» Cis regular.
> Every vertex outside C has 0, 7|C| or |C| neighbours in C.

For every v ¢ C that has exactly 5|C| neighbours in C, reverse its
adjacencies with C. The resulting graph is cospectral with I.
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How to find cospectral graphs

Theorem (Wang, Qiu and Hu, 2019).
Let I' be a graph with disjoint subgraphs C;, C; such that:
ICi] = |Gl
» There is a constant ¢ such that, for every vertex of C;, the number of neighbours in
Ci minus the number of neighbours in Cj,is c.
» Every vertex outside C; U C; has either:
0.1 0 neighbours in Cy and |G| in G,
0.2 |C4q| neighbours in C; and 0 in Cs,
0.3 equally many neighbours in C; and C,.
For every v ¢ C; U G, for which 1 or 2 holds, reverse its adjacencies with C; U C,. The
resulting graph is cospectral with T.




How to find cospectral graphs

Theorem (Wang, Qiu and Hu, 2019).
Let I' be a graph with disjoint subgraphs C;, C; such that:
> ‘C]‘ = ‘Cz‘.

» There is a constant ¢ such that, for every vertex of C;, the number of neighbours in
Ci minus the number of neighbours in Cj,is c.

» Every vertex outside C; U C; has either:

0.1 0 neighbours in Cy and |G| in G,
0.2 |C4q| neighbours in C; and 0 in Cs,
0.3 equally many neighbours in C; and C,.

For every v ¢ C; U G, for which 1 or 2 holds, reverse its adjacencies with C; U C,. The
resulting graph is cospectral with T.
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3 Which graphs did we check?

Definition.
Let SC {0,1,...,k — 1}. The generalized Johnson graph Js(n, k)
has as vertices the k-subsets of {1,. .., n}, where two vertices are

adjacent if their intersection size is in S.
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adjacent if their intersection size is in S.
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Definition.
Let SC {0,1,...,k — 1}. The generalized Johnson graph Js(n, k)
has as vertices the k-subsets of {1, ..., n}, where two vertices are

adjacent if their intersection size is in S.
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Which graphs did we check?

Definition.

Let SC {0,1,...,k — 1}. The generalized Grassmann graph
Jg,s(n, k) has as vertices the k-subspaces of I}, where two vertices
are adjacent if their intersection dimension is in S.

Jg,{0y(n, k) is the g-Kneser graph Ky(n, k).
Jq,{k—13(n, k) is the Grassmann graph Jq(n, k).
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What is known?

S
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=2 =3 =4
el E=0 B0 B0
4 NDS NDS NDS
5 NDS
n 6 NDS NDS NDS
7 NDS NDS NDS
8 NDS NDS NDS
9 NDS NDS NDS

lhringer, Munemasa (2019)



What is known?
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Three new results

Theorem.
J2y(n, 4) is NDS if n > 8.

Theorem.

Theorem.
K>(n, k) is NDS.
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Three new results

Theorem.
J{2y(n, 4) is NDS if n > 8.

» WQH-switching

{1,2,3,4} o———@ {1.45,6}

C c
{1235} ® {2456}
{1,2,3,6) #E———® {3,4,5,6}

» Ji2y(n, 4) is edge-regular, the new graph is not
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Theorem.

Jp1,2,..1511(2k; k) is NDS if k > 5, k odd.
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Three new results

Theorem.

] k-1 (2k, k) is NDS if k > 5, k odd.
{1,2,... > }
> (zkk) = (Zkk—_11) + (Zkk_1) = 2(2kk__11)
A A

A A
» adjacency matrix A = < < )

Theorem (Cioaba et al. (2018)).
1{01 u}(Zk—Lk—T) is NDS if k > 5, k odd.
bR AR 2
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J11(6, 3) has vertices {1,2,3},{1,2,4},...,{1,4,6},{1,5,6},
{4, 5, 6}, {3, 5,6}, RN {2, 3, 5}, {2, 3,4}
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J11(6, 3) has vertices {1,2,3},{1,2,4},...,{1,4,6},{1,5,6},
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PP

» adjacency matrix A = (P P>

{1,2,3}
Cq 0. {4,5,6}
) CZ
@®{1,4,6} /
{145} @ {1,2,6} ® (1,56} ®{2,3,5}

\. ./ {2,3,6} @ {3,4,5}

® {2,3,4}
{1,3;4} \0 0/
{1,255} {25.6)
® ° {3:4,6}
/ {1,3,5}\ ° Y
{1,3,6} @———o-——@ {1,2,4} / {2’4’6}\
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» GM-switching set C := {pipam, p1psm, paps™, papsm}
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Theorem.
Ky(n, k) is NDS.
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Three new results

Theorem.
Ky(n, k) is NDS.

[k —2]

» GM-switching set C := {p1pam, p1psm, pops7, papsT}
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Three new results

Theorem.
Ky(n, k) is NDS.

» GM-switching set C := {p1pam, p1ps™, papsm, paps7}



Thank you for listening!
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