Cospectral mates for generalized Johnson and Grassmann graphs

Joint work with Aida Abiad, Willem H. Haemers and Robin Simoens

Jozefien D'haeseleer

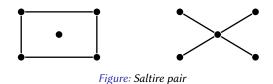
Graphternoon 2024

Overview

- 1 Cospectral mates
- 2 How to find cospectral graphs
- 3 Which graphs did we check?
- 4 What is known?
- 5 Three new results

Table of Contents

- 1 Cospectral mates
- 2 How to find cospectral graphs
- 3 Which graphs did we check?
- 4 What is known?
- 5 Three new results



Both graphs have spectrum $\{-2,0,0,0,2\}$.

Figure: Saltire pair

Both graphs have spectrum $\{-2,0,0,0,2\}$.

Definition.

Graphs with the same spectrum are **cospectral**. Cospectral nonisomorphic graphs are **cospectral mates**.

Definition.

A graph is **determined by its spectrum (DS)** if it has no cospectral mate. Otherwise, we say that it is **not determined by its spectrum (NDS)**.

Conjecture (Haemers).

Almost all graphs are determined by their spectrum.

Conjecture (Haemers).

Almost all graphs are determined by their spectrum.

Computational evidence (Brouwer and Spence, 2009)

Conjecture (Haemers).

Almost all graphs are determined by their spectrum.

- Computational evidence (Brouwer and Spence, 2009)
- Interesting for complexity theory

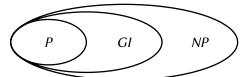


Figure: Is graph isomorphism an easy problem? Is it NP-complete?

Conjecture (Haemers).

Almost all graphs are determined by their spectrum.

- Computational evidence (Brouwer and Spence, 2009)
- Interesting for complexity theory
- Interesting for chemistry

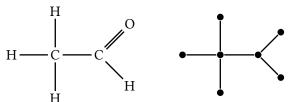


Figure: The molecular graph of acetaldehyde (ethanal).

Table of Contents

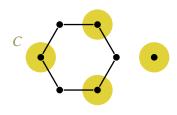
- 1 Cospectral mate
- 2 How to find cospectral graphs
- 3 Which graphs did we check?
- 4 What is known?
- 5 Three new results

Theorem (Godsil and McKay, 1982).

Let Γ be a graph with a subgraph C such that:

- C is regular.
- **Every vertex outside** C has $0, \frac{1}{2}|C|$ or |C| neighbours in C.

For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .

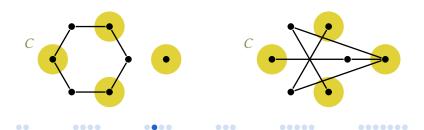


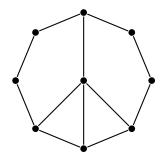
Theorem (Godsil and McKay, 1982).

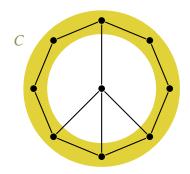
Let Γ be a graph with a subgraph C such that:

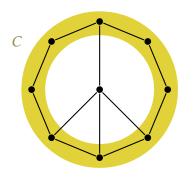
- C is regular.
- **Every vertex outside** C has $0, \frac{1}{2}|C|$ or |C| neighbours in C.

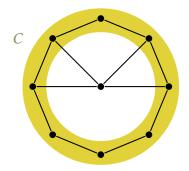
For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C, reverse its adjacencies with C. The resulting graph is cospectral with Γ .









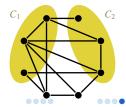


Theorem (Wang, Qiu and Hu, 2019).

Let Γ be a graph with disjoint subgraphs C_1 , C_2 such that:

- $ightharpoonup |C_1| = |C_2|.$
- There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c.
- ► Every vertex outside $C_1 \cup C_2$ has either:
 - 0.1 0 neighbours in C_1 and $|C_2|$ in C_2 ,
 - 0.2 $|C_1|$ neighbours in C_1 and 0 in C_2 ,
 - 0.3 equally many neighbours in C_1 and C_2 .

For every $v \notin C_1 \cup C_2$ for which 1 or 2 holds, reverse its adjacencies with $C_1 \cup C_2$. The resulting graph is cospectral with Γ .



Theorem (Wang, Qiu and Hu, 2019).

Let Γ be a graph with disjoint subgraphs C_1 , C_2 such that:

- $ightharpoonup |C_1| = |C_2|.$
- There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c.
- ► Every vertex outside $C_1 \cup C_2$ has either:
 - 0.1 0 neighbours in C_1 and $|C_2|$ in C_2 ,
 - 0.2 $|C_1|$ neighbours in C_1 and 0 in C_2 ,
 - 0.3 equally many neighbours in C_1 and C_2 .

For every $v \notin C_1 \cup C_2$ for which 1 or 2 holds, reverse its adjacencies with $C_1 \cup C_2$. The resulting graph is cospectral with Γ .

Table of Contents

- 1 Cospectral mates
- 2 How to find cospectral graphs
- Which graphs did we check?
- 4 What is known?
- 5 Three new results

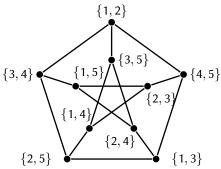
Definition.

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Johnson graph $J_S(n, k)$ has as vertices the k-subsets of $\{1, ..., n\}$, where two vertices are adjacent if their intersection size is in S.

Definition.

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Johnson graph $J_S(n, k)$ has as vertices the k-subsets of $\{1, ..., n\}$, where two vertices are adjacent if their intersection size is in S.

 $ightharpoonup J_{\{0\}}(n,k)$ is the *Kneser graph K*(n,k).

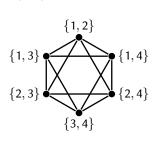


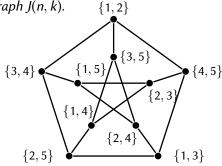
Definition.

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Johnson graph $J_S(n, k)$ has as vertices the k-subsets of $\{1, \ldots, n\}$, where two vertices are adjacent if their intersection size is in S.

 $ightharpoonup J_{\{0\}}(n,k)$ is the Kneser graph K(n,k).

 $\searrow J_{\{k-1\}}(n,k)$ is the Johnson graph J(n,k).





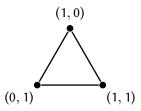
Definition.

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Grassmann graph $J_{q,S}(n,k)$ has as vertices the k-subspaces of \mathbb{F}_q^n , where two vertices are adjacent if their intersection dimension is in S.

Definition.

Let $S \subseteq \{0, 1, \dots, k-1\}$. The generalized Grassmann graph $J_{q,S}(n,k)$ has as vertices the k-subspaces of \mathbb{F}_q^n , where two vertices are adjacent if their intersection dimension is in S.

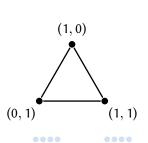
 $ightharpoonup J_{q,\{0\}}(n,k)$ is the *q-Kneser graph K_q*(n,k).



Definition.

Let $S \subseteq \{0, 1, ..., k-1\}$. The generalized Grassmann graph $J_{q,S}(n,k)$ has as vertices the k-subspaces of \mathbb{F}_q^n , where two vertices are adjacent if their intersection dimension is in S.

- $ightharpoonup J_{q,\{0\}}(n,k)$ is the *q-Kneser graph K_q*(n,k).
- $> J_{q,\{k-1\}}(n,k)$ is the *Grassmann graph J_q*(n,k).



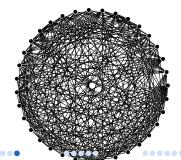


Table of Contents

- 1 Cospectral mate
- 2 How to find cospectral graphs
- 3 Which graphs did we check?
- 4 What is known?
- 5 Three new results

What is known?

J _S (n, 2)	S {0}
	4	DS
	5	DS
	6	DS
n	7	DS
	8	NDS
	9	DS

1-0	n, 3)	S						
JS(11, 3)	$\{0\}$	{1}	{2}				
	6	DS	NDS	NDS				
	7	DS	NDS	NDS				
	8	NDS	NDS	NDS				
n	9	?	NDS	NDS				
	10	?	NDS	NDS				
	11	?	NDS	NDS				

Legend:

Trivial

Hoffman/Chang (1959)

Huang, Liu (1999)

Van Dam et al. (2006)

Haemers, Ramezani (2010)

What is known?

$J_S(n,4)$		S									
		{0}	{1}	{2}	{3}	{0, 1}	{0,2}	{0,3}			
	8	DS	?	?	NDS	?	NDS	?			
	9	DS	?	?	NDS	NDS	NDS	?			
	10	?	?	?	NDS	?	NDS	?			
n	11	NDS	?	?	NDS	?	NDS	?			
	12	?	?	?	NDS	?	NDS	?			
	13	?	?	?	NDS	?	NDS	?			

Legend: Trivial Huang, Liu (1999) Van Dam et al. (2006)

Haemers, Ramezani (2010) Cioabă et al. (2018)

.

What is known?

$J_S(n,4)$		S									
		{0}	{1}	{2}	{3}	{0,1}	{0,2}	{0,3}			
	8	DS	?	NDS	NDS	?	NDS	?			
	9	DS	?	NDS	NDS	NDS	NDS	?			
,	10	?	?	NDS	NDS	?	NDS	?			
n	11	NDS	NDS	NDS	NDS	?	NDS	?			
	12	?	?	NDS	NDS	?	NDS	?			
	13	?	?	NDS	NDS	?	NDS	?			

Legend:TrivialHuang, Liu (1999)Van Dam et al. (2006)Haemers, Ramezani (2010)Cioabă et al. (2018)

New result: $J_{\{2\}}(n, 4)$ is NDS

Sporadic result

What is known?

$J_{q,S}(n,2)$		$q = 2$ $S = \{0\}$	$q = 3$ $S = \{0\}$	$q = 4$ $S = \{0\}$
		()	()	()
	4	NDS	NDS	NDS
	5	NDS	NDS	NDS
n	6	NDS	NDS	NDS
''	7	NDS	NDS	NDS
	8	NDS	NDS	NDS
	9	NDS	NDS	NDS

Legend:

Van Dam, Koolen (2005)

Ihringer, Munemasa (2019)

.

What is known?

$J_{q,S}(n,3)$		<i>q</i> = 2			q = 3			q = 4		
		S			S			S		
		{0}	{1}	{2}	{0}	{1}	{2}	{0}	{1}	{2}
	6	?	?	NDS	?	?	NDS	?	?	NDS
	7	?	?	NDS	?	?	NDS	?	?	NDS
_	8	?	?	NDS	?	?	NDS	?	?	NDS
n	9	?	?	NDS	?	?	NDS	?	?	NDS
	10	?	?	NDS	?	?	NDS	?	?	NDS
	11	?	?	NDS	?	?	NDS	?	?	NDS

Legend: Van Dam et al. (2006)

0000

0000

What is known?

		<i>q</i> = 2			q = 3			q = 4		
$J_{q,S}(n,3)$		S			S			S		
		{0}	{1}	{2}	{0}	{1}	{2}	{0}	{1}	{2}
	6	NDS	?	NDS	?	?	NDS	?	?	NDS
	7	NDS	?	NDS	?	?	NDS	?	?	NDS
	8	NDS	?	NDS	?	?	NDS	?	?	NDS
n	9	NDS	?	NDS	?	?	NDS	?	?	NDS
	10	NDS	?	NDS	?	?	NDS	?	?	NDS
	11	NDS	?	NDS	?	?	NDS	?	?	NDS

Legend:

Van Dam et al. (2006)

New result: $K_2(n, k)$ is NDS

Table of Contents

- 1 Cospectral mates
- 2 How to find cospectral graphs
- 3 Which graphs did we check?
- 4 What is known?
- 5 Three new results

Three new results

Theorem.

 $J_{\{2\}}(n,4)$ is NDS if $n \ge 8$.

Theorem.

 $J_{\{1,2,...rac{k-1}{2}\}}(2k,k)$ is NDS if $k \geq 5, k$ odd.

Theorem.

 $K_2(n, k)$ is NDS.

Three new results

Theorem.

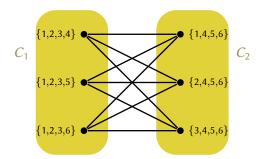
 $J_{\{2\}}(n,4)$ is NDS if $n \ge 8$.

Three new results

Theorem.

 $J_{\{2\}}(n,4)$ is NDS if $n \ge 8$.

➤ WQH-switching

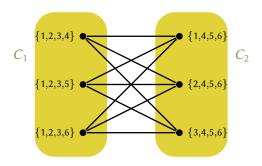


••

Theorem.

 $J_{\{2\}}(n,4)$ is NDS if $n \ge 8$.

➤ WQH-switching



 $> J_{\{2\}}(n,4)$ is edge-regular, the new graph is not

...

000

.....

Theorem.

 $J_{\left\{1,2,\ldots,rac{k-1}{2}
ight\}}(2k,k)$ is NDS if $k\geq 5,$ k odd.

Theorem.

 $J_{\{1,2,\dots\frac{k-1}{2}\}}(2k,k)$ is NDS if $k \ge 5$, k odd.

Theorem.

 $J_{\{1,2,...\frac{k-1}{2}\}}(2k, k)$ is NDS if $k \ge 5$, k odd.

► adjacency matrix
$$A = \begin{pmatrix} A' & \bar{A}' \\ \bar{A}' & A' \end{pmatrix}$$

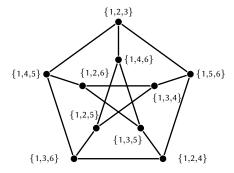
Theorem (Cioabă et al. (2018)).

$$J_{\{0,1,\ldots,\frac{k-3}{2}\}}(2k-1,k-1)$$
 is NDS if $k \geq 5$, k odd.

```
J_{\{1\}}(6,3) has vertices \{1,2,3\},\{1,2,4\},\ldots,\{1,4,6\},\{1,5,6\}, \{4,5,6\},\{3,5,6\},\ldots,\{2,3,5\},\{2,3,4\}
```

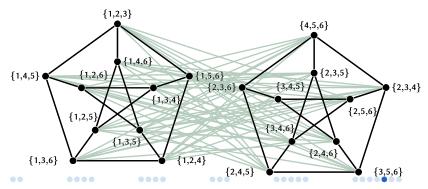
$$J_{\{1\}}(6,3)$$
 has vertices $\{1,2,3\},\{1,2,4\},\ldots,\{1,4,6\},\{1,5,6\},$
 $\{4,5,6\},\{3,5,6\},\ldots,\{2,3,5\},\{2,3,4\}$

► adjacency matrix
$$A = \begin{pmatrix} P & \bar{P} \\ \bar{P} & P \end{pmatrix}$$



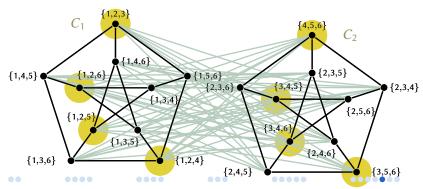
$$J_{\{1\}}(6,3)$$
 has vertices $\{1,2,3\},\{1,2,4\},\ldots,\{1,4,6\},\{1,5,6\},$
 $\{4,5,6\},\{3,5,6\},\ldots,\{2,3,5\},\{2,3,4\}$

► adjacency matrix
$$A = \begin{pmatrix} P & \bar{P} \\ \bar{P} & P \end{pmatrix}$$



$$J_{\{1\}}(6,3)$$
 has vertices $\{1,2,3\},\{1,2,4\},\ldots,\{1,4,6\},\{1,5,6\},$
 $\{4,5,6\},\{3,5,6\},\ldots,\{2,3,5\},\{2,3,4\}$

► adjacency matrix
$$A = \begin{pmatrix} P & \bar{P} \\ \bar{P} & P \end{pmatrix}$$

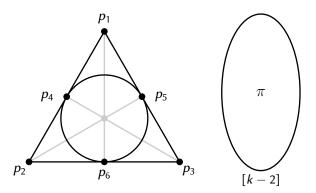


Theorem.

 $K_2(n, k)$ is NDS.

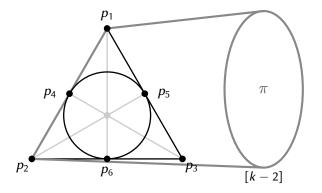
Theorem.

 $K_2(n, k)$ is NDS.



Theorem.

 $K_2(n, k)$ is NDS.

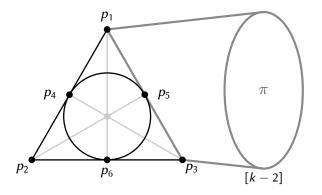


► GM-switching set $C := \{p_1p_2\pi, p_1p_3\pi, p_2p_3\pi, p_4p_5\pi\}$

00000

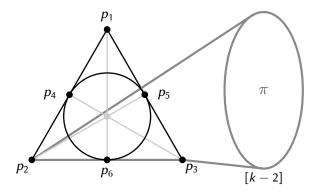
Theorem.

 $K_2(n, k)$ is NDS.



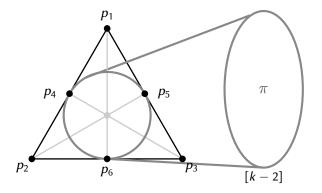
Theorem.

 $K_2(n, k)$ is NDS.



Theorem.

 $K_2(n, k)$ is NDS.



Thank you for listening!