Polynomial Gyárfás-Sumner conjecture for graphs of bounded boxicity James Davies Cambridge Yelena Yuditsky ULB Graphternoon in Ghent November 2024

It is not true that $\chi(G) \leq \omega(G)$ VG.

Question:	
Is there a function f such that	
$\chi(G) \leq f(u(G)) \forall G^2$	

It is not true that X(G) EW(G) VG.

Question:
Is there a function f such that
$\chi(G) \leq f(u(G)) + G^2$

N	\mathbf{O} .
	•

It is not true that $\chi(G) \leq \omega(G)$ VG.

Question:	
 Is there a function f such that	
$\chi(G) \leq f(\omega(G)) \forall G^2$	

Theorem (Erdős 1959): For every KEN, there exists a graph with girth at least K and $\chi(G) \ge K$.

Question: Is there a function f_e such that $\chi(G) \leq f_e(w(G))$ YGEE for some class of graphs E?

Question:
Is there a function
$$f_{\mathcal{C}}$$
 such that
 $\chi(G) \leq f_{\mathcal{C}}(w(G))$
VGCE for some class of graphs E?

Conjecture (Gyárfás-Summer '80):
Yes,
if
$$G=P_T$$
 is the class of graphs
Which do not contain the tree T as
an induced subgraph.

Conjecture (Gyárfás - Summer '80): Yes. if G=P+ is the class of graphs which do not contain the tree as an induced subgraph.

Our result:

Theorem (Davies, Y. 2024): Yden and a tree T, the class of intersection graphs of axis-aligned boxes in IRd with no induced copy of T is polynomially x-bounded.

Proof idea: (in IR3)

Partition the edges into a few types.

Open questions:

Does the Gyárfás-Summer Conjecture hold for the following classes of graphs:

