Graphs with nonnegative resistance curvature

Karel Devriendt – University of Oxford (karel.devriendt@maths.ox.ac.uk)

November 2024 – Graphternoon in Ghent

- 1. Graphs from simplices
- 2. Graph-theoretic characterization
- 3. Three results
- 4. Three questions

1. Graphs from simplices

1. Graphs from simplices

1. Graphs from simplices

$$
\bigotimes \quad \rightarrow \quad \boxed{\quad}
$$

The acute skeleton of a simplex S is the graph $G(S)$ with

$$
V = \{\text{vertices of } S\}
$$

$$
E = \{uv : \text{angle between } S \setminus u \text{ and } S \setminus v \text{ is acute } (< 90^{\circ})\}
$$

A simplex S is ...

A simplex S is ... \triangleright non-obtuse if all angles are non-obtuse $(\leq 90^{\circ})$

A simplex S is ... \triangleright $\mathsf{non\text{-}obtuse}$ if all angles are $\mathsf{non\text{-}obtuse} \ (\leq 90^\circ)$ \triangleright centered if it is non-obtuse and S contains its circumcenter

A simplex S is ...

- \triangleright non-obtuse if all angles are non-obtuse $(\leq 90^{\circ})$
- \triangleright centered if it is non-obtuse and S contains its circumcenter
- \triangleright well-centered if it is centered and S° contains its circumcenter

A simplex S is ...

- \triangleright non-obtuse if all angles are non-obtuse $(\leq 90^{\circ})$
- \triangleright centered if it is non-obtuse and S contains its circumcenter
- \triangleright well-centered if it is centered and S° contains its circumcenter

Which graphs arise in this way?

A simplex S is ...

- \triangleright non-obtuse if all angles are non-obtuse $(\leq 90^{\circ})$
- \triangleright centered if it is non-obtuse and S contains its circumcenter
- \triangleright well-centered if it is centered and S° contains its circumcenter

Which graphs arise in this way?

Theorem (Fiedler 2011)

The skeleton of a well-centered simplex S is 1-tough:

A simplex S is ...

- \triangleright non-obtuse if all angles are non-obtuse $(\leq 90^{\circ})$
- \triangleright centered if it is non-obtuse and S contains its circumcenter
- \triangleright well-centered if it is centered and S° contains its circumcenter

Which graphs arise in this way?

Theorem (Fiedler 2011)

The skeleton of a well-centered simplex S is 1-tough: to disconnect $G(S)$ in $k \geq 2$ components, at least k vertices must be removed from $G(S)$.

- 2. Graph-theoretic characterization
- \blacktriangleright The ingredients (1)
- 2. Graph-theoretic characterization
- \blacktriangleright The ingredients (1)

- 2. Graph-theoretic characterization
- \blacktriangleright The ingredients (1)

A spanning tree of G is a maximal acyclic subgraph $T \subseteq G$.

Spanning tree polytope $P(G)$ is the convex hull of $\chi_{E(T)}$ over all STs.

- 2. Graph-theoretic characterization
- \blacktriangleright The ingredients (2)
- 2. Graph-theoretic characterization
- \blacktriangleright The ingredients (2)

- 2. Graph-theoretic characterization
- \blacktriangleright The ingredients (2)

A **matching** of G is a subgraph $M \subseteq G$ with maximum degree 1.

2-matching polytope is the convex hull of $2\chi_{E(M)}$ over all matchings.

Theorem $(D. 2024+)$

The following are equivalent for a connected graph G :

Theorem $(D. 2024+)$

The following are equivalent for a connected graph G :

1. G is the skeleton of some centered simplex;

Theorem $(D. 2024+)$

The following are equivalent for a connected graph G :

- 1. G is the skeleton of some centered simplex;
- 2. G admits a positive distribution on its spanning trees, such that every vertex has expected degree ≤ 2 under this distribution;

Theorem $(D. 2024+)$

The following are equivalent for a connected graph G :

- 1. G is the skeleton of some centered simplex;
- 2. G admits a positive distribution on its spanning trees, such that every vertex has expected degree ≤ 2 under this distribution;
- 3. $P(G)^\circ \cap 2MP(G)$ is nonempty.

2. Graph-theoretic characterization

Theorem $(D. 2024+)$

The following are equivalent for a connected graph G :

- 1. G is the skeleton of some centered simplex;
- 2. G admits a positive distribution on its spanning trees, such that every vertex has expected degree ≤ 2 under this distribution;
- 3. $P(G)^\circ \cap 2MP(G)$ is nonempty.

We call these graphs resistance nonnegative (RN).

2. Graph-theoretic characterization

Theorem $(D. 2024+)$

The following are equivalent for a connected graph G :

- 1. G is the skeleton of some centered simplex;
- 2. G admits a positive distribution on its spanning trees, such that every vertex has expected degree ≤ 2 under this distribution;
- 3. $P(G)^\circ \cap 2MP(G)$ is nonempty.

We call these graphs resistance nonnegative (RN).

2. Graph-theoretic characterization

Theorem $(D. 2024+)$

The following are equivalent for a connected graph G :

- 1. G is the skeleton of some well-centered simplex;
- 2. G admits a positive distribution on its spanning trees, such that every vertex has expected degree $<$ 2 under this distribution;

3.
$$
P(G)^\circ \cap 2MP(G)^\circ
$$
 is nonempty.

We call these graphs resistance positive (RP).

Corollary

Hamiltonian graphs are RP but the converse does not hold (e.g. Petersen).

Corollary

Hamiltonian graphs are RP but the converse does not hold (e.g. Petersen).

Proof idea:

 $(1 - \varepsilon)$ × uniform distribution on Hamiltonian paths $\varepsilon \times$ uniform distribution on all other trees

Corollary

Hamiltonian graphs are RP but the converse does not hold (e.g. Petersen).

Corollary

Deciding if G is RN is a linear program.

Corollary

Hamiltonian graphs are RP but the converse does not hold (e.g. Petersen).

Corollary

Deciding if G is RN is a linear program.

Corollary

If G is RN and even/odd, then G has a perfect/near perfect matching.

Question: Does there exist finite $t \geq 1$ such that t-tough implies RP?

Question: Does there exist finite $t \geq 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

Question: Does there exist finite $t > 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

▷ Chvátal's conjecture: $\exists t > 2$ such that t-tough implies Hamiltonian

Question: Does there exist finite $t > 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

▷ Chvátal's conjecture: $\exists t > 2$ such that t-tough implies Hamiltonian

Question: What is computational complexity of " $G \in \mathbb{R}N$ "?

Question: Does there exist finite $t > 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

▷ Chvátal's conjecture: $\exists t > 2$ such that t-tough implies Hamiltonian

Question: What is computational complexity of " $G \in \mathbb{R}N$ "?

 \triangleright Exponentially-sized (in $|E|$) linear program

Question: Does there exist finite $t > 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

▷ Chvátal's conjecture: $\exists t > 2$ such that t-tough implies Hamiltonian

Question: What is computational complexity of " $G \in \mathbb{R}N$ "?

 \triangleright Exponentially-sized (in $|E|$) linear program \triangleright $P(G)$ is matroid polytope

Question: Does there exist finite $t > 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

▷ Chvátal's conjecture: $\exists t > 2$ such that t-tough implies Hamiltonian

Question: What is computational complexity of " $G \in \mathbb{R}N$ "?

 \triangleright Exponentially-sized (in $|E|$) linear program \triangleright $P(G)$ is matroid polytope

Question: Which planar graphs are RN?

Question: Does there exist finite $t > 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

▷ Chvátal's conjecture: $\exists t > 2$ such that t-tough implies Hamiltonian

Question: What is computational complexity of " $G \in \mathbb{R}N$ "?

 \triangleright Exponentially-sized (in $|E|$) linear program \triangleright $P(G)$ is matroid polytope

Question: Which planar graphs are RN?

 \triangleright RN = "nonnegative scalar curvature"

Question: Does there exist finite $t > 1$ such that t-tough implies RP?

▷ We know: Hamiltonian ⊊ RP ⊆ 1-tough

▷ Chvátal's conjecture: $\exists t > 2$ such that t-tough implies Hamiltonian

Question: What is computational complexity of " $G \in \mathbb{R}N$ "?

 \triangleright Exponentially-sized (in $|E|$) linear program \triangleright $P(G)$ is matroid polytope

Question: Which planar graphs are RN?

 \triangleright RN = "nonnegative scalar curvature"

Other suggestions or comments are welcome!

Thank you! Questions?

karel.devriendt@maths.ox.ac.uk

"Graphs with nonnegative resistance curvature" Karel Devriendt, arXiv:2410.07756 [math.CO]