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Abstract. Grünbaum conjectured that for any integer k ≥ 2, there exists
no n-vertex graph G of circumference n− k in which the removal of any k
vertices from G yields a hamiltonian graph. We show that for any positive
integers c and k there is an infinite family of c-connected graphs of cir-
cumference k less than their order, in which the limit (as the graphs’ order
tends to infinity) of the ratio between the number of k-vertex sets whose
removal yields a hamiltonian graph and the number of all k-vertex sets is 1.
Motivated by a question of Katona, Kostochka, Pach, and Stechkin, it is
proven that there exists an infinite family of non-hamiltonian graphs of in-
creasing diameter d in which the removal of any two vertices at distance 1
or any distance at least (d+ 6)/2 yields a hamiltonian graph.
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1 Introduction

Grünbaum introduced Γ(j, k) in [6] as the family of all graphs whose circumference is exactly
k less than their order, and in which any j vertices are missed by some longest cycle; cir-
cumference here means the length of a longest cycle. Γ(1, 1) are exactly the hypohamiltonian
graphs, i.e. non-hamiltonian graphs in which every vertex-deleted subgraph is hamiltonian.
These have been studied extensively and various infinite families are known. Examples in-
clude Petersen’s graph and Coxeter’s graph. In 1974, Grünbaum [6] conjectured that Γ(j, j)
is empty for all j ≥ 2. Very little is known about this conjecture. Thomassen [8] agrees with
Grünbaum that Γ(2, 2) is empty, and points out that every member of Γ(2, 2) has the prop-
erty that each of its vertex-deleted subgraphs lies in Γ(1, 1). Clearly, a graph lying in Γ(2, 2)
would have to be 4-connected, and proving hamiltonian properties of 4-connected graphs is
notoriously difficult. One reason is that many powerful tools rely on planarity, but by a
celebrated theorem of Tutte planar 4-connected graphs are hamiltonian, so they certainly do
not lie in Γ(2, 2) (or Γ(j, j) for any j for that matter).

A problem related to the question whether Γ(2, 2) is empty was raised in 1989 by Katona,
Kostochka, Pach, and Stechkin [5]. They asked whether an n-vertex graph in which every
induced k-vertex subgraph is hamiltonian must itself be hamiltonian, where k is an integer
satisfying n/2 < k < n − 1. We shall here be interested in the case k = n − 2, i.e. whether
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there exists a non-hamiltonian n-vertex graph in which any two vertices are missed by an
(n − 2)-cycle; this is a relaxation of Grünbaum’s question. This problem, in a different but
equivalent formulation, was also raised by van Aardt, Burger, Frick, Llano, and Zuazua,
see [1, Question 1]. The only difference between Grünbaum’s problem for j = 2 and the
Katona et al. problem (for k = n− 2) is that the former does not allow (n− 1)-cycles to be
present, while the latter does.

Throughout this paper, for a given graph G the distance between vertices v and w in G is
the length of a shortest path in G with endpoints v and w. We denote the diameter of G, i.e.
the greatest distance between any two of its vertices, by diam(G), but sometimes it will be
convenient to simply write d. Also, put D := {1, . . . ,diam(G)}. We shall investigate metric
relaxations of the aforementioned problems and will use to this end the following definitions.
For an integer k ≥ 2, let Γ(2, k, S) be the family of all n-vertex graphs G of circumference
n− k in which for all c ∈ S ⊆ D, for any pair of vertices v and w in G at distance exactly c
the graph G− v − w contains an (n− k)-cycle. Clearly, Γ(2, k) = Γ(2, k,D). For an integer
j ≥ 3, let Γ(j, k, c) be the family of all n-vertex graphs G of circumference n− k in which for
any j-vertex set X in G composed exclusively of vertices at pairwise distance at least c ∈ D
the graph G −X contains an (n − k)-cycle; observe that Γ(j, k) = Γ(j, k, 1) and that these
definitions only make sense for k ≥ j. We emphasise that the definitions for j = 2 and j ≥ 3
vary because removing pairs of vertices at distance exactly c for all c ∈ D encompasses the
choice of any pair of vertices, but removing e.g. triples of vertices at distance exactly c for all
c ∈ D does not encompass the choice of any triple of vertices, e.g. two adjacent vertices and
a third vertex, far from the first two.

By replacing in the preceding two definitions the term “(n − k)-cycle” by “hamiltonian
cycle”, we define Γ∗(2, k, S), Γ∗(j, k, c) (for j ≥ 3), and Γ∗(j, k) (for j ≥ 2); the latter is thus
the family of all n-vertex graphs of circumference n− k in which the removal of any j-vertex
set yields a hamiltonian graph. These definitions only make sense for j ≥ k. We note that
Γ(2, 2, S) = Γ∗(2, 2, S), Γ(j, j, c) = Γ∗(j, j, c) (for j ≥ 3), and in particular Γ(j, j) = Γ∗(j, j)
(for j ≥ 2). In this notation, the Katona et al. problem is equivalent to the question whether
Γ∗(2, 1) ∪ Γ(2, 2) is empty or not.

The paper is structured as follows. We shall first show that for every positive integer k
there exists an infinite family of graphs of circumference k less than their order, in which the
limit (as the graphs’ order tends to infinity) of the ratio between the number of k-vertex sets
whose removal yields a hamiltonian graph and the number of all k-vertex sets is 1; thereafter,
metric relaxations of Grünbaum’s conjecture and the Katona et al. problem are given. These
complement the theorem from [10] stating that there exists an infinite family G ⊂ Γ∗(2, 1, {1})
with

sup
G∈G

|{v ∈ V (G) : G− v is non-hamiltonian}|
|V (G)|

=
1

4

as well as the result from [4] that Γ(1, 1) ∩ Γ∗(2, 1, {1}) contains infinitely many polyhedral
graphs.

Graphs in this paper are assumed to be connected, unless explicitly stated otherwise; for
a possibly disconnected graph G, we write ω(G) for the number of connected components
of G. The connectivity of a graph G will be denoted by κ(G). In a graph G, a path with
endpoint v ∈ V (G) is called a v-path and a path between distinct vertices v ∈ V (G) and
w ∈ V (G) is called a vw-path. A graph is traceable if it contains a hamiltonian path, and
hypotraceable if it is non-traceable, but all of its vertex-deleted subgraphs are traceable. For
a positive integer k, we write [k] := {1, . . . , k}. For a vertex v in a graph G, we denote by
NG(v) its set of neighbours; whenever the graph G is clear from the context, we simply write
N(v). For a set S and a positive integer k, we put

(
S
k

)
:= {X ⊆ S : |X| = k}. For a graph

G, we denote by G its complement.
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A set of vertices whose removal disconnects a given graph is a cut, and a k-cut is a cut of
cardinality k. Let G be a non-complete graph of connectivity k and order greater than k, X
a k-cut in G, and C a component of G −X. Then G[V (C) ∪X] is a k-fragment of G with
attachments X, but sometimes we will suppress specifying the attachments, or shorten this
and simply write X-fragment. A k-fragment is trivial if it contains exactly k + 1 vertices,
and a cut X of a graph G is trivial if G − X has exactly two components and X is the
set of attachments of a trivial k-fragment. Let F, F ′ be disjoint 3-fragments of graphs of
connectivity 3, and let F have attachments x1, x2, x3 and F ′ have attachments x′1, x

′
2, x

′
3.

Identifying xi with x′i for all i, we obtain the graph (F, {x1, x2, x3})
... (F ′, {x′1, x′2, x′3}). When

the vertices that are being identified (always using a bijection) are clear from the context,
we simply write F

...F ′. In a 2-connected non-hamiltonian graph G, we call exc(G) ⊂ V (G),
which contains every vertex v of G such that G− v is non-hamiltonian, the set of exceptional
vertices of G. A 2-connected non-hamiltonian graph with exactly one exceptional vertex is
almost hypohamiltonian.

2 Results

The first part of the next theorem aims at giving an asymptotic solution to Grünbaum’s
problem which is constructive, as well as pointing out that any graph may occur as an
induced subgraph of the constructed graphs. The latter property is inspired by Chvátal’s
question whether every graph occurs as an induced subgraph of some hypohamiltonian graph
(solved, affirmatively, in [11]). The second part of the next theorem is motivated as follows.
In [10] it was observed that Γ(2, 2, {2}) ̸= ∅ due to the join of Kt and Kt+2. Note that here
D \ {1} = {2}. In the same way, for any integers j ≥ 3 and t ≥ 2 we have that the join of Kt

and Kt+j lies in Γ(j, j, 2). It would be of interest to find similar results for graphs of diameter
larger than 2. More precisely, to verify for |D| ≥ 3 whether Γ(2, 2, D \ {1}) or Γ(j, j, 2) (for
j ≥ 3) are empty or not. Another way to see Γ(2, 2, D \ {1}) ̸= ∅ is as covering half of all
distances, since here we have |D| = 2. This we can generalise, as shown below.

Theorem 1. (i) For any positive integers j and κ, and possibly disconnected graph A, there
exists an infinite family of κ-connected graphs G such that A is an induced subgraph of every
graph in G, every G ∈ G has circumference |V (G)| − j, and

lim
|V (G)|→∞,

G∈G

∣∣∣{W ∈
(
V (G)

j

)
: G−W is hamiltonian

}∣∣∣∣∣∣(V (G)
j

)∣∣∣ = 1.

(ii) Let j ≥ 3 be an integer. The families Γ(2, 2, {⌈d/2⌉ + 1, . . . , d}) and Γ(j, j, ⌈d/2⌉ + 1)
contain for infinitely many values of d infinitely many graphs of connectivity 2 and diameter d
as well as infinitely many graphs of connectivity 3 and diameter d.

Proof. We will need the following construction. Let j be a given positive integer, and let k > j
be any integer. Consider pairwise disjoint graphs H1, . . . ,Hk, each containing a distinguished
vertex xi ∈ V (Hi) which we will call special. Let G(Hi−xi; k;B) be the graph obtained from
pairwise disjoint graphs Hi, i ∈ [k], and a disjoint (and possibly disconnected) graph B by
joining each vertex of B with each vertex in

⋃
iN(xi) and deleting vertices xi, i ∈ [k]. The

following auxiliary result will be useful.

Claim. Consider positive integers j and k with j < k. For every i ∈ [k], assume a graph Hi

to have order at least j+2 and to be hypohamiltonian, in which case its special vertex xi can
be chosen arbitrarily, or almost hypohamiltonian, in which case its special vertex xi shall be
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its exceptional vertex. Then for any graph B on 2k − j vertices, connected or not,

(a) the circumference of G := (Hi − xi; k;B) is |V (G)| − j; and
(b) for any W ⊂ V (G) \ V (B) with |W | = j and |W ∩ V (Hi − xi)| ≤ 1 for every i ∈ [k], we
have that G−W is hamiltonian.

Proof of the Claim. Put NHi(xi) = {xij}deg(xi)
j=1 as well as Fi := Hi − xi. From the hypo-

hamiltonicity or almost hypohamiltonicity of Hi one immediately infers that in Fi for no
s, t ∈ [deg(xi)] there exists a hamiltonian xisxit-path, a property we call (P1), but for any
v ∈ V (Fi) there exist p, q ∈ [deg(xi)] such that the graph Fi − v contains a hamiltonian
xipxiq-path, a property we call (P2). Henceforth, we see each Fi as well as B as a subgraph
of G.

Consider W ⊂ V (G) as described in the statement. Without loss of generality we may
assume that |W ∩V (Fi)| = 1 for all i ∈ [j] and |W ∩V (Fi)| = 0 for all i ∈ {j+1, . . . , k}. For
i ∈ [j], we denote the unique vertex contained in W ∩ V (Fi) by wi.

By (P2), for every i ∈ [j] there exist pi, qi ∈ [deg(xi)] such that there is a hamiltonian
xipixiqi-path pi in Fi −wi and for every i ∈ {j +1, . . . , k} there exist pi, qi ∈ {2, . . . ,deg(xi)}
such that there is a hamiltonian xipixiqi-path pi in Fi − xi1. Denote the vertices of B by
v1, . . . , v2k−j and put v2k−j+1 := v1. Then

k⋃
i=1

pi+

j∑
i=1

(vixipi+vi+1xiqi)+
k∑

i=j+1

(vixi1+vi+1xi1)+

2k−j∑
i=k+1

(vixi−k+j,pi−k+j
+vi+1xi−k+j,qi−k+j

)

is a hamiltonian cycle in G−W , so circ(G) ≥ |V (G)|− j. Let c be a longest cycle in G. Since
|V (Fi)| ≥ j + 1 for every i ∈ [k], the cycle c must visit every Fi. Put

S := {i : ω(Fi ∩ c) = 1} and T := {i : ω(Fi ∩ c) > 1},

and denote the cardinalities of these sets by s and t, respectively.
If ω(Fi ∩ c) = 1, then Fi ∩ c is a path but it cannot be spanning by (P1). By construction

there is a bijection between the components of
⋃

i(Fi ∩ c) and the components of B ∩ c, so
2t+ s ≤ 2k − j. Thus, as s+ t = k, we have s ≥ j. This yields

|V (c)| ≤ |V (B)|+
∑
i∈S

(|V (Fi)| − 1) +
∑
i∈T

|V (Fi)| = |V (G)| − s ≤ |V (G)| − j,

which completes the proof of the Claim.

We now prove statement (i). As described in [9], let H be a 4-connected almost hypo-
hamiltonian graph obtained by considering the join of a 3-connected hypotraceable graph T
(of which there are infinitely many [7]) and K1 = ({x}, ∅), i.e. adding to T the vertex x and
joining x to every vertex in T . The exceptional vertex of H is x, and we choose x to be
the special vertex of H. We now choose k and H such that 2k − j ≥ max{κ, |V (A)|} and
|V (H)| ≥ j +2. Consider pairwise disjoint copies H1, . . . ,Hk of H, and denote the copy of x
in Hi by xi. Let B be a (possibly disconnected) graph on 2k − j vertices containing A as an
induced subgraph. Put G := (Hi − xi; k;B). Note that by the choice of k and the structure
of Hi, due to which every vertex of Hi − xi is connected to every vertex of B, the graph G
is κ-connected.

By Claim (a), the circumference of G is |V (G)|− j. Put p := |V (H)|−1 so that the order
of G is pk+2k−j. Let W ⊂

(
V (G)\V (B)

j

)
be the set of all sets W with |W ∩(V (Hi)\{xi})| ≤ 1

for every i ∈ [k]. By Claim (b) for every W ∈ W we have that G−W is hamiltonian, so∣∣∣{W ∈
(
V (G)

j

)
: G−W is hamiltonian

}∣∣∣∣∣∣(V (G)
j

)∣∣∣ ≥ |W|∣∣∣(V (G)
j

)∣∣∣
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of which the right-hand side equals

pj ·
(
k
j

)(
pk+2k−j

j

) =

j−1∏
i=0

1− i
k

1 + 2
p − j+i

pk

.

The limit of this ratio, when k → ∞ and p → ∞, is 1. This concludes the proof of state-
ment (i).

We now prove statement (ii), first treating the connectivity 2 case. We call a graph G
partially hypohamiltonian if it contains two vertices v and w, which we will call nice, such
that there is no hamiltonian vw-path in G, but for every vertex x in G− v − w there exists
a hamiltonian vw-path in G − x. Note that G is 2-connected and may be hamiltonian.
Furthermore, as a locally hypohamiltonian graph may contain more than one pair of nice
vertices, but later on in a given locally hypohamiltonian graph G we will want to work with
a fixed such pair (v, w), once v and w have been fixed as the nice vertices of G we shall not
call any other pair of vertices in G “nice”. Petersen’s graph is partially hypohamiltonian, but
there are other such graphs, as we shall now see.

Let H be a cubic hypohamiltonian graph and let a be a vertex in H such that H contains
a vertex b at distance diam(H) from a. It is easy to deduce from the hypohamiltonicity of
H that H −N(a) has exactly two components. From these we obtain two 3-fragments with
attachments N(a) in H: one on four vertices, which is thus trivial, and which contains the
vertex a, and one on |V (H)| − 1 vertices not containing the vertex a. Since hypohamiltonian
graphs have at least ten vertices [3], the latter fragment must contain at least nine vertices.
(We recall that there exist infinitely many cubic hypohamiltonian graphs; see for instance [2].)
We shall call this non-trivial N(a)-fragment F . We will use the following lemma due to
Thomassen.

Lemma 1 (Thomassen; Lemma 1 from [8]). Let F be a 3-fragment with at least five vertices
of a hypohamiltonian graph, and let A be the attachments of F . Then (i) F has no hamilto-
nian path connecting two vertices of A; (ii) for every vertex v of F , the graph F − v has a
hamiltonian path connecting two vertices of A.

Denote the neighbours of a by A = {x, y, z}. Add to F two new vertices v, w, and join
both v and w to every vertex of A. We call this graph G′. We now prove that G′ is partially
hypohamiltonian with nice vertices v and w. By Thomassen’s Lemma 1, for no c, d ∈ A there
exists a hamiltonian cd-path in F . Thus, there exists no hamiltonian vw-path in G′. Now
let u be some vertex in G′ − v − w. Then there is a hamiltonian pq-path in G′ − v − w − u
for appropriate p, q ∈ A, again by Lemma 1. Adding to this path the edges pv and qw
the desired hamiltonian vw-path in G′ − u is obtained. Every graph constructed in this
manner is partially hypohamiltonian, as we have just proven, and will be called suitable. By
construction, in a suitable partially hypohamiltonian graph G′ with nice vertices v and w,
there is a vertex v′ at distance diam(G′) from both v and w. We abbreviate this property by
(⋆).

For integers s and j with s ≥ 2j ≥ 4, consider the complete graph Ks with vertex set
{c1, . . . , cs} and j pairwise disjoint suitable partially hypohamiltonian graphs L1, . . . , Lj , all of
the same diameter which we denote by dL, and with pairs of nice vertices (v1, w1), . . . , (vj , wj),
respectively.

Identify each vi with c2i−1 and each wi with c2i. We obtain the graph G which clearly has
connectivity 2. Put d := diam(G) and consider henceforth L1, . . . , Lj and Ks to be subgraphs
of G. As {v1, w1} and {v2, w2} are 2-cuts of G at distance 1 and by (⋆) for i ∈ {1, 2} the graph
Li contains a vertex v′i at distance dL from both vi and wi, we have that the distance in G
between v′1 and v′2 is 2dL+1, so dL ≤ (d− 1)/2. If W is any set of j vertices in G at pairwise
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distance at least ⌈d/2⌉+1, then no two of its vertices can lie in the same Li, as vertices therein
lie at distance at most dL ≤ (d−1)/2 < ⌈d/2⌉+1, and moreover W ∩Ks = ∅, as the distance
between any vertex in Ks and any vertex in G is at most dL + 1 ≤ (d + 1)/2 < ⌈d/2⌉ + 1.
Since |W | = j, we have |W ∩ V (Li)| = 1 for every i. Thus, as ⌈d/2⌉ + 1 ≥ 2, each of the
graphs L1 − {v1, w1}, . . . , Lj − {vj , wj} contains exactly one element of W .

We now show that G−W is hamiltonian. We denote by xi the unique vertex in V (Li)∩W .
Since each Li is locally hypohamiltonian, there is a hamiltonian viwi-path pi in Li−xi. Then(

j⋃
i=1

V (pi) ∪ {c2j+1, . . . , cs},
j⋃

i=1

E(pi) ∪ {c2kc2k+1}j−1
k=1 ∪ {cℓcℓ+1}s−1

ℓ=2j ∪ {csc1}

)

is the desired hamiltonian cycle in G−W .
Each Li is locally hypohamiltonian, so there is no hamiltonian viwi-path in Li and thus,

the circumference of G is at most |V (G)| − j. As we have just provided a cycle of length
|V (G)| − j, the circumference of G is exactly this quantity. There are infinitely many such
graphs G of some fixed diameter—as advertised in the theorem’s statement—because we can
choose s freely as long as s ≥ 2j, and this does not affect the graph’s diameter.

We now discuss the connectivity 3 case which is based on the same construction as in the
proof of (i). Consider integers j and k with k > j ≥ 2 and let H1, . . . ,Hk be pairwise disjoint
graphs, all of the same diameter dH , and each Hi a cubic hypohamiltonian graph in which
we choose the special vertex xi of Hi, for every i ∈ [k], such that it has in Hi a vertex at
distance dH .

Let G := (Hi−xi; k;K2k−j) and consider henceforthH ′
1 := H1−x1, . . . ,H

′
k := Hk−xk and

K2k−j to be subgraphs of G. Arguments as given above yield that diam(G) =: d = 2dH . If W
is any set of j vertices in G at pairwise distance at least ⌈d/2⌉+1, then no two of its vertices
can lie in the same H ′

i, as vertices therein lie at distance at most dH = d/2 < ⌈d/2⌉ + 1;
note that H ′

i and one vertex of K2k−j induce H. Hence |W ∩ V (H ′
i)| ≤ 1 for every i. By

Claim (a), G has circumference |V (G)| − j, and by Claim (b), G−W is hamiltonian.
Thus, we have for j = 2 that G ∈ Γ (2, 2, {⌈diam(G)/2⌉+ 1, . . . ,diam(G)}) and for j ≥ 3

that G ∈ Γ(j, j, ⌈diam(G)/2⌉ + 1). That indeed G has connectivity 3 is a routine argument
using the fact that hypohamiltonian graphs must be 3-connected, and left to the reader.
Finally, there are infinitely many such graphs G of some fixed diameter since we can choose
k freely as long as k > j, and, as above, this does not affect the graph’s diameter. □

We do not know whether Theorem 1 (ii) holds for graphs of connectivity at least 4.
Although 4-connected almost hypohamiltonian graphs have been described [9], a family of
such graphs would be needed in which the diameter becomes arbitrarily large in order to
solve the connectivity 4 case.

A natural intermediary question is to determine whether, for j = 2, we can find non-
hamiltonian graphs in which the removal of vertices at a small distance as well as at a large
distance yields hamiltonian graphs. We can answer this affirmatively, but first need two
lemmas and a definition: a graph is called K2-hamiltonian if the removal of any pair of
adjacent vertices yields a hamiltonian graph.

Lemma 2 (Thomassen; Corollary 1 from [8]). Let G1 and G2 be disjoint hypohamiltonian
graphs. For i ∈ {1, 2}, let Gi contain a 3-cut Xi and Xi-fragments Fi and F ′

i . Then, if both F1

and F2 are non-trivial, or both Fi and F ′
3−i are trivial, (F1, X1)

... (F2, X2) is hypohamiltonian.

Lemma 3 [10]. Let G1 and G2 be disjoint non-hamiltonian K2-hamiltonian graphs. For
i ∈ {1, 2}, let Gi contain a 3-cut Xi and Xi-fragments Fi and F ′

i such that for each x ∈ Xi
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there is a hamiltonian path in Fi − x and in F ′
i − x between the two vertices of Xi − x. This

is fulfilled e.g. when Xi is non-trivial, or exc(Gi) ∩ Xi = ∅. Then, if both F1 and F2 are
non-trivial, or both Fi and F ′

3−i are trivial, (F1, X1)
... (F2, X2) is K2-hamiltonian, but not

hamiltonian.

Theorem 2. For infinitely many diameters d, we have

Γ(1, 1) ∩ Γ∗(2, 1, {1, ⌊(d+ 6)/2⌋, . . . , d}) ̸= ∅.

Proof. Consider a cubic K2-hamiltonian hypohamiltonian graph H (infinitely many such
graphs exist as proven in [10]) of diameter dH , and a vertex v therein such that there exists
in H a vertex at distance dH from v. Take two copies of the 3-fragment H − v which we
denote by F and F ′, their respective attachments being X and X ′. Let G be the graph given
in Fig. 1.

F F ′

x

y

z

x′

y′

z′

Fig. 1: The construction used in the proof of Theorem 2. White vertices indicate vertices
contained in 3-cuts being identified when applying the operation

... .

G can be obtained as
F
...P

...P ′ ...P
...F ′,

where P and P ′ are Petersen graphs with two vertices at distance 2 removed (and the triples
of vertices identified when applying

... are omitted; they are given in Fig. 1). Since Petersen’s
graph andH are hypohamiltonian, Lemma 2 yields that G is hypohamiltonian—in particular,
its circumference is |V (G)| − 1. Thus, as Petersen’s graph and H are K2-hamiltonian, by
Lemma 3 we have that G is K2-hamiltonian. So G ∈ Γ∗(2, 1, {1}).

Henceforth, we consider F, F ′, and the aforementioned copies of Petersen’s graph to be
subgraphs of G. For the rest of the proof note that, by construction, all arguments given for
F hold analogously for F ′. In G, the distance between any two vertices in X is at most 3, so
the distance between any two vertices residing in F is at most dH + 1: any shortest path S
between vertices in H either does not use v (as defined in this proof’s first paragraph) and
thus exists in F , and therefore has length at most dH , or uses v, in which case S can be
altered to a path in G between the same vertices and of length at most |E(S)|+ 1.

Assuming H to have sufficiently large diameter, by the choice of v it is thus clear that
for vertices q, q′ at maximum distance in G we must have q ∈ V (F ) and q′ ∈ V (F ′). Note
that the distance between q and X must be dH − 1 due to the fact that X is a 3-cut of
G and by the condition from this proof’s first paragraph. So for at least one vertex in X,
the distance between q and that vertex is dH − 1. Since the distance between x and x′ is
1, between y and y′ is 3, and between z and z′ is 2 (vertices x, x′, y, y′, z, z′ as defined in
Fig. 1), we have d := diam(G) ≤ 2dH + 1. Moreover, by construction, there exists a vertex
r ∈ V (F ) at distance dH − 1 from X, so the distance between r and x is at least dH − 1,
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whence d ≥ 2dH − 1. Summarising, the diameter d of G is at least 2dH − 1 and at most
2dH + 1.

Let w and w′ be vertices in G at distance at least ⌊(d + 6)/2⌋. We have shown earlier
that two vertices in F (and analogously in F ′) lie at distance at most dH + 1 < ⌊(d+ 6)/2⌋,
so w and w′ do not both reside in F or F ′. We may assume without loss of generality that
w ∈ V (F ).

We use the drawing of G given in Fig. 1. Consider the central vertical axis A of G and let
L (R) be the graph induced by all vertices on A or to the left of A (on A or to the right of
A). It is easy to see that if a shortest path between w and a vertex in L uses vertices outside
of L, it can always be rerouted to a path of the same length lying entirely in L.

By previously given arguments, we have d = 2dH + ρ with ρ ∈ {−1, 0, 1}. Then the
distance between w and a vertex in L must be at most d′ := (2dH + ρ)/2, by the rerouting
argument we have just given and the fact that if d′ would be greater than (2dH + ρ)/2, the
diameter of G would exceed 2dH+ρ, a contradiction. By extending paths in L, for any vertex
w̃ in G− F − F ′ a ww̃-path can be described of length at most

d′ + 2 =
2dH + ρ

2
+ 2 = dH + 2 + ρ/2 <

⌊
2dH + 6 + ρ

2

⌋
=

⌊
d+ 6

2

⌋
.

So w′ ∈ V (F ′). We now describe a hamiltonian cycle in G− w − w′.
As H is hypohamiltonian, for any u ∈ V (F ) there exist two vertices a, b in X such

that there is a hamiltonian ab-path in F − u (in particular, if u ∈ X, then F − u contains
a hamiltonian path between the two vertices in X − u); the same holds for F ′. There
are, ignoring symmetric cases, six situations to deal with. These can be deduced from the
properties of the Petersen graph, but it is better to simply illustrate the necessary cycles, see
Fig. 2. Moreover, it is easy to modify the cycles given in Fig. 2 in order to address the cases
when the removed vertices lie in X or X ′. □

Fig. 2: The six relevant cases in the proof of Theorem 2. Each fragment contains a black
vertex indicating that a vertex is being omitted from the cycle in that fragment.
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In [6], Grünbaum was particularly interested in the planar case. Unfortunately, the graphs
from Theorem 2 are non-planar. In fact, due to Tutte’s classic theorem that every planar
4-connected graph is hamiltonian, Γ∗(2, 1) ∪ Γ(2, 2) cannot have planar members. However,
there might be planar graphs if we restrict ourselves to all distances except 2. A partial
answer—again in the spirit of trying to find pairs of vertices at small and large distances
whose removal yields a hamiltonian graph—is given by the following result.

Proposition. There exists a polyhedral graph in Γ∗(2, 1, {1, d}).

Proof. One of the graphs from [4], namely G48 (reproduced in Fig. 3), yields the statement.
In that paper it is shown that G48 is hypohamiltonian, so it is of circumference |V (G48)| − 1,
as well as K2-hamiltonian, so for every pair of adjacent vertices a and b in G48, the graph
G48 − a − b is hamiltonian. (The proof of the result containing the latter fact as a special
case, given in [4], uses a new method inspired by an old idea of Chvátal, namely his so-called
flip-flop graphs [2].) Excluding symmetric cases, there is only one pair of vertices in G48 at
distance diam(G48) = d = 8, denoted in Fig. 3 by x and y. Note that the only vertex at
distance 8 from x is y, and the only vertex at distance 8 from y is x. That G48 − x − y is
indeed hamiltonian is shown in Fig. 3. □

x y

Fig. 3: The graph G48. Therein, two vertices x and y are labelled; these are at distance
diam(G48) = 8. A hamiltonian cycle in G48 − x− y is also emphasised.

Unfortunately G48 contains two vertices at distance diam(G48) − 1 = d − 1 whose re-
moval yields a non-hamiltonian graph, so G48 /∈ Γ∗(2, 1, {1, d− 1, d}) = Γ∗(2, 1, {1, 7, 8}). As
mentioned earlier, in [4] it was proven that Γ(1, 1) ∩ Γ∗(2, 1, {1}) contains infinitely many
polyhedral graphs—by the last proposition we know that Γ(1, 1) ∩ Γ∗(2, 1, {1, d}) contains a
polyhedral graph, but whether there are infinitely many remains an open question.
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[6] B. Grünbaum. Vertices Missed by Longest Paths or Circuits. J. Combin. Theory, Ser.
A 17 (1974) 31–38.

[7] C. Thomassen. Hypohamiltonian and hypotraceable graphs. Discrete Math. 9 (1974)
91–96.

[8] C. Thomassen. Hypohamiltonian graphs and digraphs. Theory and Applications of
Graphs, Lecture Notes in Mathematics 642, Springer, Berlin (1978) 557–571.

[9] C. T. Zamfirescu. On Hypohamiltonian and Almost Hypohamiltonian Graphs. J. Graph
Theory 79 (2015) 63–81.

[10] C. T. Zamfirescu. K2-hamiltonian graphs: I. SIAM J. Discrete Math. 35 (2021) 1706–
1728.

[11] C. T. Zamfirescu and T. I. Zamfirescu. Every graph occurs as an induced subgraph of
some hypohamiltonian graph. J. Graph Theory 88 (2018) 551–557.

10


