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Abstract

We investigate 2-planarizing 2-factors, i.e. 2-factors of embedded graphs so that
cutting along the cycles of the 2-factor we get two plane graphs where the cycles of
the 2-factors are a spanning set of face boundaries in each of the graphs. We will give
necessary criteria for an abstract graph to have an embedding with a 2-planarizing 2-
factor as well as necessary criteria for embedded graphs to have such a 2-factor. Along
the way, we discuss to which degree classical results from planar hamiltonicity theory
can be extended in our framework. In addition we present computational results on
how common 2-planarizing 2-factors are in small cubic graphs.
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1 Introduction

2-planarizing 2-factors are a generalization of hamiltonian cycles in plane graphs, where
a graph is plane if it is planar and embedded in the Euclidean plane. A hamiltonian
cycle in a plane graph G splits the graph into two parts: an interior and an exterior part.
Both parts—equipped with the embedding induced by G—are plane and in both parts the
hamiltonian cycle is the boundary of a face, only with the direction once clockwise and
once counterclockwise. So a plane graph G has a hamiltonian cycle if and only if there
are two plane connected graphs G1, G2 with the same vertices and the (except for the
orientation, which is different) same spanning facial cycles f1, f2, so that G is the graph
obtained by gluing G1 to G2 along the cycles f1, f2. (We recall that a cycle in a plane
graph is facial if it bounds a face of the graph.) A hamiltonian cycle is a special case of
a 2-factor, that is: a 2-regular spanning subgraph of the graph. For higher genera, where
hamiltonian cycles do not necessarily separate the graph any more (and never into two
plane graphs), we need 2-factors with more than one cycle to split the graph into two
plane parts. In general, an embedded graph is defined to have a 2-planarizing 2-factor if
there are plane connected graphs G1 and G2 on the same set of vertices and 2-factors F1

of G1 and F2 of G2, composed of (except for the orientation, which is different) the same
facial cycles, so that G is the graph obtained by gluing G1 to G2 along identical faces.
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For a graph G we denote with V (G) (E(G)) its vertex (edge) set, and for an embedded
graph F (G) shall be the set of its faces. In this article, edges {u, v} in an embedded graph
are interpreted as two oppositely directed edges (u, v) from u to v and (u, v)−1 = (v, u)
from v to u. An embedded graph is a connected graph G together with a cyclic ordering of
the oriented edges starting at the same vertex, that we will interpret as clockwise. When
we refer to an oriented edge e as being between an oriented edge e1 and an oriented edge
e2 in the order, this means that starting at e1 and proceeding in the rotational order,
the edge e is reached before the edge e2. Such combinatorial embeddings correspond to
2-cell embeddings on orientable surfaces [7, 9]. Each cycle c corresponds to two oppositely
oriented directed cycles c+, c− of oriented edges. A face in an embedded graph is a cyclic
sequence e0, . . . , en−1 of oriented edges, so that for 0 ≤ i < n the edge e(i+1) (mod n)

is the next edge of e−1i in the ordering around the end vertex of ei. We call such a pair
(ei, e(i+1) (mod n)) an angle of the face. When drawing an embedded graph and interpreting
a face as the region bounded by edges, due to the clockwise interpretation of the ordering
around the vertices, a face is the sequence of oriented edges with the face on the left one
gets by a counterclockwise traversal of the oriented boundary edges. With this concept
we can make the definition of a 2-planarizing 2-factor exact:

Let G be an embedded graph with a 2-factor F consisting of cycles c1, . . . , ck. We
say that F is a 2-planarizing 2-factor if there are plane graphs G1 and G2 with V (G1) =
V (G2) = V (G)—where G1 and G2 shall be called the decomposition graphs—with the
following properties:

• E(G1) ∪ E(G2) = E(G);

• E(G1) ∩ E(G2) = E(F);

• for each cycle ci in F , one of the two oppositely oriented directed cycles occurs as a
face in G1 and the other in G2; and

• the orientation of edges around the vertices in G1 and G2 is the one induced by G,
that is: the rotational order in G with the edges not in G1, resp. G2 removed.

The faces c
+/−
i in G1 and G2 are called external faces and the others internal faces.

We say that an abstract graph G has a 2-planarizing 2-factor if G has an embedding with
a 2-planarizing 2-factor. Examples of graphs having and graphs not having a 2-planarizing
2-factor are given in [5]; Petersen’s graph is among the former, Heawood’s graph among
the latter.

Counting the number of vertices, edges, and faces we may conclude that if a 2-
planarizing 2-factor consists of k cycles, the graph G is embedded in an orientable surface
of genus k − 1. For k = 1 we have that G is a plane hamiltonian graph.

For an embedded graph G, the Euler characteristic is defined as χ(G) := |V (G)| −
|E(G)| + |F (G)| and we write γ(G) = 2−χ(G)

2 for its genus. For an abstract graph G, its
genus mingen(G) is the smallest integer γ such that the graph has an embedding with
genus γ.

Let G1 = (V,E1), G2 = (V,E2) be two embedded graphs that have the same set of
vertices and where the set E1 ∩ E2 of common edges forms a facial 2-factor—that is: a
2-factor whose cycles are face boundaries—in both graphs, only that the directed cycles
forming the faces are oppositely directed. Then we can form a graph G1,2 by taking a
copy of G1 and inserting the edges of E2 \ E1 in the following way. For each vertex v
there are exactly two oriented edges ev,1, ev,2 starting at v that occur in both graphs. The
opposite orientation of the faces implies that in the copy of G1 the edge ev,2 follows ev,1
in the rotational order and in G2 it is the other way around—that is: all other edges are
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between ev,1 and ev,2. To this end we can insert all oriented edges of E2 \E1 starting at v
into the copy of G1 between ev,1 and ev,2. For these edges we keep the order given by G2.
We call this identification of 2-factors. Starting with two connected plane graphs G1, G2

with these properties, we can construct a graph with a 2-planarizing 2-factor.
Note that a set of pairwise disjoint cycles (which need not form a 2-factor) in a (con-

nected) embedded graph is called planarizing by Mohar and Thomassen [9, p. 177] if
cutting along these cycles yields one plane connected graph; see also [1]. In [5] and [11]
the same term is used if by cutting along these cycles a disjoint union of plane graphs
is obtained. In this article we have chosen to call the second concept “2-planarizing” in
order to be able to distinguish these two concepts easily in the future.

2 Results

The topic of [5] were generalizations of Grinberg’s classical formula [6], but one of the
main results is about 2-planarizing 2-factors, so we will repeat it here. We denote the size
of a face f by s(f).

Theorem 1 ([5]). Let G be an embedded graph with a 2-planarizing 2-factor, so that the
corresponding plane graphs are G1 and G2. Then∑

f∈F (G1)

(s(f)− 2) =
∑

f∈F (G2)

(s(f)− 2).

Note that it makes no difference whether the sums are over all faces of G1 and G2 or
just the internal faces, as there are equally many external faces in both graphs and they
have the same sizes.

Tutte proved that plane 4-connected graphs are hamiltonian [10] and thus have a
2-planarizing 2-factor. Unfortunately, already for the torus there exist 4-connected em-
bedded graphs not admitting a 2-planarizing 2-factor: consider the canonical toroidal
embedding G of the (4-connected) Cartesian product of two odd-length cycles. As F (G)
consists exclusively of 4-faces and |F (G)| is odd, by applying Theorem 1 we obtain that G
has no 2-planarizing 2-factor. However, it is not difficult to see that the Cartesian product
of two 3-cycles does have another embedding on the torus with a 2-planarizing 2-factor.
Later we will see in Corollary 2 that for any n ∈ {5} ∪ {k ∈ N : k ≥ 8}, the complete

graph Kn is a 4-connected graph of genus
⌈
(n−3)(n−4)

12

⌉
for which no embedding admits a

2-planarizing 2-factor.
A hamiltonian graph has neither a cut-vertex nor a bridge—is this true for non-

hamiltonian 2-planarizing 2-factors, as well? For the former it is not, as shown in Figure 1:
there exist embedded graphs with a 2-planarizing 2-factor and a cut-vertex. For bridges,
the situation is different.

Theorem 2. If a graph G has an embedding with a 2-planarizing 2-factor, then G is
bridgeless.

Proof. Let G be an embedded graph with a 2-planarizing 2-factor F . Suppose that G
contains a bridge b. As b is a bridge, it cannot lie on a cycle—in particular, b is not an
edge of F . In G, there exist exactly two graphs G1 and G2 under decomposition by F ,
and these graphs must be connected. Only edges of F can occur in both G1 and G2, so b
lies either in G1 or in G2. Without loss of generality assume the former. Thus, b is not in
G2. As G2 spans G, the graph G− b is connected, a contradiction.
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Figure 1: A graph embedded on the torus with a 2-planarizing 2-factor composed of
cycles uvw and abc, and cut-vertex v. Thus, there exist graphs of connectivity 1 with an
embedding admitting a 2-planarizing 2-factor.

2.1 Bounding the size

The genus of a graph gives a lower bound on the number of cycles in a 2-planarizing 2-
factor, so that sometimes there are simply not enough vertices for this number of cycles. If
the genus of an abstract graph is not known, we can still give a ratio between the number
of vertices and the number of edges, above which no 2-planarizing 2-factor can exist. We
make use of the girth of a graph, i.e. the length of a shortest cycle in the graph. We will
assume here G to always contain at least one cycle—otherwise we know that it cannot
have a 2-planarizing 2-factor—so for the girth g of G we have 3 ≤ g < ∞. If g is the
girth of an abstract graph G, then |V (G)| ≥ g(γ(G) + 1) is a necessary condition for an
embedding of G to have a 2-planarizing 2-factor. We also point out that, as a consequence
of both decomposition graphs having to be connected, we have that if an embedded graph
G has a 2-planarizing 2-factor, then |E(G)| ≥ |V (G)|+ 2γ(G).

Lemma 1. Let G be a graph of girth at least g. If G has a 2-planarizing 2-factor, then

|E(G)| ≤ (g + 2)|V (G)| − 4g

g − 2

and this inequality is strict if |V (G)| is not divisible by g. As a consequence we have that

|E(G)| ≤ 5|V (G)| − 12

and if |V (G)| is not divisible by 3, this inequality is also strict.

Proof. Assume that G is embedded in a surface of genus γ(G) with a 2-planarizing 2-
factor, which then has γ(G) + 1 cycles. Since every such cycle contains at least g vertices,
we have |V (G)| ≥ g(γ(G) + 1) and |V (G)| > g(γ(G) + 1) if |V (G)| is not divisible by g.
For G we have

γ(G) =
2− χ(G)

2
=

2− |V (G)|+ |E(G)| − |F (G)|
2

with |F (G)| ≤ 2|E(G)|
g , as the boundary of a face must contain a cycle. We get

|V (G)| ≥ g(γ(G) + 1) = g

(
4− |V (G)|+ |E(G)| − |F (G)|

2

)
≥ 4g − |V (G)|g + |E(G)|g − 2|E(G)|

2
,

from which the first statement follows. The second statement is obtained by inserting
g = 3 for which the maximum is attained and both inequalities are strict if not all cycles
in the 2-factor can have length g, resp. 3.
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Figure 2: An embedding of K6 with a 2-planarizing 2-factor composed of cycles abc, uvw,
and an embedding of K7 with a 2-planarizing 2-factor composed of cycles abcd, uvw.

We present three consequences of Lemma 1:

Corollary 1. For r ≥ 10 no r-regular graphs with a 2-planarizing 2-factor exist.

Corollary 2. The complete graph Kn admits an embedding containing a 2-planarizing
2-factor if and only if n ∈ {3, 4, 6, 7}.

Proof. Lemma 1 implies n ≤ 7. The graphs K1 and K2 are acyclic. The graphs K3 and
K4 are hamiltonian planar graphs and therefore have a 2-planarizing 2-factor. For K5,
which is non-planar, there is no embedding with a 2-planarizing 2-factor, as there are not
enough vertices for at least two disjoint cycles. In Figure 2, we give toroidal embeddings
of K6 and K7 possessing 2-planarizing 2-factors.

Corollary 3. The complete bipartite graph Ks,t has an embedding with a 2-planarizing
2-factor if and only if s = t ∈ {2, 4}.

Proof. For s 6= t, Ks,t does not admit any 2-factor, so s = t is a necessary condition. Using
g = 4, Lemma 1 gives t < 5. The graph K1,1 is acyclic and K3,3 is a toroidal 6-vertex
graph of girth 4, so it has no non-hamiltonian 2-factor. K2,2 is a 4-cycle, so it is plane and
hamiltonian, and K4,4 has a 2-planarizing 2-factor as depicted in Figure 3.

a b c d

u v w x

Figure 3: An embedding of K4,4 with a 2-planarizing 2-factor composed of cycles abcd,
uvwx.

If G is k-regular, then |E(G)| = k|V (G)|
2 . Combining this with Lemma 1 we obtain for

k-regular graphs of girth g

k|V (G)|
2

≤ g|V (G)|+ 2|V (G)| − 4g

g − 2

which gives

|V (G)| − kg − 2g − 2k

4
|V (G)| ≥ 2g.

We can extract the following result.
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Theorem 3. Let G be a k-regular graph of girth g. If kg − 2g − 2k ≥ 4, then there exists
no embedding of G with a 2-planarizing 2-factor. If kg − 2g − 2k < 4 and an embedding
of G admits a 2-planarizing 2-factor, then

|V (G)| ≥
⌈

8g

4− kg + 2g + 2k

⌉
.

Barnette conjectured in 1969 that every 3-connected bipartite cubic plane graph is
hamiltonian [2]. This conjecture remains open. But its analogue for higher genera and
2-planarizing 2-factors is not true—as can be seen at examples like K3,3, see Corollary 3,
and the Heawood graph [5].

For k ≥ 3 and g ≥ 3, let nk,g be the minimum order of a k-regular graph of girth g
admitting an embedding with a 2-planarizing 2-factor. If for the given values of k and g
no such graph exists, put nk,g :=∞.

Lemma 2. The following table presents bounds and exact values of nk,g. For values of
nk,g not mentioned in the table we have nk,g = ∞ by Theorem 3. Bounds inferred from
Theorem 3 are given between round brackets.

k\g 3 4 5 6 7 8 9

3 4 (≥ 4) 8 (≥ 6) 10 (≥ 8) 16 (≥ 12) 30 (≥ 19) 40 (≥ 32) (≥ 72)
4 6 (≥ 4) 8 (≥ 8) 25 (≥ 20)
5 6 (≥ 5) 16 (≥ 16)
6 7 (≥ 6)
7 10 (≥ 8)
8 12 (≥ 12)
9 24 (≥ 24)

Proof. Case k = 3: Due to K4, we have n3,3 = 4. The only cubic graph of girth 4 and
order 6 is K3,3, which by Corollary 3 does not admit an embedding with a 2-planarizing
2-factor. A k-regular graph with k odd must have an even number of vertices, so n3,4 ≥ 8.
The cube is a plane hamiltonian cubic graph of girth 4, so n3,4 = 8. The (3, 5)-cage,
(3, 6)-cage, and (3, 7)-cage have order 10, 14, and 24, resp. The (3, 5)-cage is the Petersen
graph which admits an embedding with a 2-planarizing 2-factor [5], so n3,5 = 10. For n3,6,
n3,7, and n3,8 we used the computer program described in Section 3 applied to lists that
can be obtained from [4] to determine n3,.. Graphs realizing the minimal values can be
found in the database HoG – House of Graphs [4] when searching for the string pl_2_fac.
The result is n3,6 = 16, n3,7 = 30, and n3,8 = 40.

Case k = 4: By Corollary 2, no embedding of K5 has a 2-planarizing 2-factor, and as
the octahedron is a plane hamiltonian 4-regular graph of girth 3, we have n4,3 = 6. The
graph K4,4 has an embedding with a 2-planarizing 2-factor, see Figure 3, so n4,4 = 8. For
n4,5 the program genreg described in [8] was used to generate all graphs that were then
tested by the program from Section 3. The result is n4,5 = 25 and an example graph can
be found again in HoG when searching for the string pl_2_fac.

Case k = 5: By Corollary 2, from K6 we can infer that n5,3 = 6. With a computer
we tested all 388 graphs on 16 vertices that are 5-regular and have girth 4. The result is
that 32 of them have a planarizing 2-factor, so that n5,4 = 16. An example graph can be
found again in HoG.

Case k ∈ {6, 7, 8, 9}: By Corollary 2, from K7 we can infer that n6,3 = 7, and since
K8 admits no embedding with a 2-planarizing 2-factor, n7,3 ≥ 9. As 7 is odd, n7,3 ≥ 10.
In Figure 4 a graph decomposed into two plane graphs is given, showing that n7,3 = 10.
Graphs showing that n8,3 = 12 and n9,3 = 24 are given in Figure 5, resp. Figure 6.

It remains an open problem to determine n3,9.
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Figure 4: Graphs required to prove that n7,3 = 10.
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Figure 5: Two icosahedra with 2-factors in red. Identifying these yields n8,3 ≤ 12.
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Figure 6: Graphs showing that n9,3 ≤ 24.
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2.2 The genus of embeddings with a 2-planarizing 2-factor

Lemma 3. If G is an embedding with genus γ of a graph with girth at least g that has a
2-planarizing 2-factor, then

γ ≤ min

{
|V (G)|
g

− 1,
|E(G)| − |V (G)|

2

}
.

For r-regular graphs (r ≥ 2), this means that γ = 0 if r = 2, γ ≤ |V (G)|
4 if r = 3, and

γ ≤ |V (G)|
3 − 1 otherwise.

Proof. A 2-factor in G can have at most |V (G)|
g cycles, so the bound |V (G)|

g − 1 for the
genus is immediate.

As a 2-planarizing 2-factor has |V (G)| edges, one of the two planar parts into which

the graph is decomposed has at most |E(G)|−|V (G)|
2 edges not belonging to the 2-factor and

as the graph must be connected, there are at most |E(G)|−|V (G)|
2 + 1 cycles, giving a bound

of |E(G)|−|V (G)|
2 for the genus.

The following lemma will be useful when showing that certain graphs have embeddings
on surfaces of many different genera, all of which admit a 2-planarizing 2-factor. If two
vertices lie in the same face of an embedded graph, then there is only one cyclic order,
so this cyclic order occurs in the facial walk in the graph as well as in the corresponding
facial walk of the mirror image. A given ordering of three vertices of the same face occurs
either in the graph or in its mirror image, but not in both—at least if the facial walk is
simple. For four or more vertices there can be cyclic orders that occur neither in the graph
nor in its mirror image. These facts are the basis of the following lemma.

Lemma 4. Let G and G′ be graphs with disjoint vertex sets, 2-planarizing 2-factors F ,
resp. F ′, and (embedded) decomposition graphs G1 and G2 (for G), resp. G′1 and G′2 (for
G′). For 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3 let x1, . . . , xi be vertices in a face of G1 that is not in
F , x′1, . . . , x

′
i be vertices in a face of G′1 that is not in F ′, y1, . . . , yj be vertices in a face

of G2 that is not in F , and y′1, . . . , y
′
j be vertices in a face of G′2 that is not in F ′.

Then the graph

G1,2 = (V (G) ∪ V (G′), E(G) ∪ E(G′) ∪ {{x1, x′1}, . . . , {xi, x′i}, {y1, y′1}, . . . , {yj , y′j}})

has the 2-planarizing 2-factor F ∪ F ′.

Proof. If j = 3 then—by possibly taking the mirror images of G′1 and G′2—we can guar-
antee that in the face of G2 the cyclic order is y1, y2, y3 and in the face of G′2 the order is
y′3, y

′
2, y
′
1.

It is then easy to see that there are plane decomposition graphs G1,2
1 and G1,2

2 with
facial 2-factor F ∪ F ′ by placing G′1 (G′2) in a face of G1 (G2) that is not in F . The case
with three vertices is depicted in Figure 7.

We note that if, in the above lemma, i > 2 or j > 3, we cannot guarantee that
the edges {x1, x′1}, . . . , {xi, x′i}, {y1, y′1}, . . . , {yj , y′j} do not cross when constructing the
decomposition graphs of the larger graph.

As for g = 3 the formula in Lemma 3 gives the maximum value of γ for all possible g,

let γmax(G) = min
{⌊
|V (G)|

3 − 1
⌋
,
⌊
|E(G)|−|V (G)|

2

⌋}
.
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Figure 7: A decomposition graph of the graph G1,2.

Lemma 5. For r ∈ {2, 3, 4, 5} there are infinitely many r-regular graphs not only with
embeddings with a 2-planarizing 2-factor of genus γmax(G), but even with embeddings with
2-planarizing 2-factor in each genus from 0 to γmax(G).

Proof. For r = 2 the result is trivial, as the upper bound is 0, so each cycle has this
property. So let r ∈ {3, 4, 5}. In order to prove the lemma, we will give an r-regular
planar hamiltonian graph and a 2-factor to which Lemma 4 can be applied iteratively. We
will choose for the cases, which are in a certain sense maximal, that is where the rounding

in
⌊
|V (G)|

3 − 1
⌋
, resp.

⌊
|E(G)|−|V (G)|

2

⌋
has no effect.

In Figures 8 to 11 some 3-, 4- and 5-regular graphs built from repeated building blocks
are presented, together with 2-factors of the blocks and cycles through several blocks that
show that 2-planarizing 2-factors with any number of cycles from 1 to γmax(G) + 1 exist.
The fact that they are 2-planarizing 2-factors can either be seen directly or by applying
Lemma 4.

Figure 8: A 3-regular graph with 12 + 4n vertices for an arbitrary n ≥ 0 and with a 2-
planarizing 2-factor in bold red and building blocks to build this graph with 2-planarizing
2-factors with any number of cycles from 1 to γmax(G) + 1. In this figure—just like in the
following ones—the 2-planarizing 2-factor is drawn in red and the decomposition graphs
are the graphs with once the red and black and once the red and dashed blue edges. The
dashed blue edges are always drawn outside the red cycles and the black edges inside
the red cycles, but both graphs with the given orientations around the vertices are plane
graphs.
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Figure 9: A 4-regular graph with 6n vertices for an arbitrary n > 0 and with a 2-planarizing
2-factor with a cycle spanning some building blocks and smaller cycles in the last two
blocks. Combining a cycle through some blocks with blocks with one or two cycles 2-
planarizing 2-factors with any number of cycles from 1 to γmax(G) + 1 can be formed.

Figure 10: An example for n = 5 illustrating a construction of 5-regular graphs with 12n
vertices for an arbitrary n > 0. In this case we have a 2-planarizing 2-factor with a cycle
spanning three building blocks and smaller cycles in the last two blocks. Combining a cycle
through some blocks with blocks with one to four cycles (see also Figure 11) 2-planarizing
2-factors with any number of cycles from 1 to γmax(G) + 1 can be formed.

Figure 11: Building blocks of the 5-regular plane graph with one and two cycles. Blocks
with three and four cycles are given in Figure 10. Connections to the other blocks are
drawn as dangling edges. If the block is at the end of the row of blocks given in Figure 10,
one of the dangling edges at the top must be a dashed blue edge on the outside.
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Figure 12: The plane 3-connected 3-regular cyclically 4-edge-connected non-hamiltonian
graph J1 on 42 vertices due to Grinberg [6]. Removing the vertices of the unique 4-gon,
we obtain a hamiltonian graph J ′1.
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Figure 13: Taking m copies of the central region of this figure and arranging them in a
circular fashion we get a plane cyclically 4-connected cubic graph with a smallest 2-factor
of size 2m+ 1. The squares stand for copies of the graph J ′1—solid squares for copies with
a spanning path that is part of a cycle in the 2-factor and hollow squares for copies with
a hamiltonian cycle that is part of the 2-factor.

The next result will show that there is no bound on the difference between the genus
of a graph G and the smallest genus for which an embedding of G with a 2-planarizing
2-factor exists.

Theorem 4. For every non-negative integer g there exists a planar 3-connected, cyclically
4-connected 3-regular graph G where a smallest 2-factor contains k+ 1 ≥ g+ 1 cycles and
such a 2-factor can be chosen in a way that G has an embedding on a surface of genus k
with this 2-planarizing 2-factor.

Proof. For g = 0 e.g. the cube can serve as an example, so assume g > 0. The graph J1
in Figure 12 is plane and non-hamiltonian. The graph J ′1 obtained from J1 by removing
the vertices of the unique 4-gon has no hamiltonian path between two vertices adjacent to
neighboring vertices of the removed 4-gon (e.g. no path between a and b) and also no two
spanning paths between vertices adjacent to neighboring vertices of the removed 4-gon—as
in both cases the paths could be extended to a hamiltonian cycle of J1. There can also be
no disjoint paths between a and c as well as b and d, as these paths would have to cross
in the plane graph J ′1. This implies that if J ′1 is an induced subgraph of a larger graph
G, then any 2-factor of G either contains a cycle completely in this copy of J ′1 or a path
spanning the copy and starting and ending at diagonally opposite vertices—e.g. a and c.

For even genus g we consider the graph G sketched in Figure 13. Calling the faces with
three copies of J ′1 as cornerpoints triangles, it is easy to see that due to the fact that a
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Figure 14: The construction for odd genus. The fat vertices are vertices of the graph and
do not represent nontrivial subgraphs.

copy can only be traversed diagonally by a 2-factor, for any 2-factor each triangle contains
at least one copy of J ′1 that contains a cycle of the 2-factor in its interior. As for m copies
of the central region there are 6m triangles and as each copy lies in only three triangles,
a 2-factor contains at least 2m cycles that lie completely inside one copy and—unless all
cycles lie inside such a copy in which case the 2-factor has 6m cycles—also at least one
cycle not inside a copy. So any 2-factor of G contains at least 2m+ 1 cycles. Taking the
hamiltonian cycle and paths of J ′1 shown in Figure 12 and combining them as shown in
Figure 13, one gets a 2-factor with exactly 2m+ 1 cycles.

Taking the red squares as copies of J ′1 with the rotational order of the vertices as given
by the vertex labels, the red and black edges, resp. the red and blue edges give the two
decomposition graphs showing that this is a 2-planarizing 2-factor.

For odd genus, the construction is given in Figure 14. One copy of J ′1 is replaced by a
4-gon—embedded and traversed by the cycle as described in the figure.

3 A computer program

In order to determine some values for nk,g and to get an intuition on how common 2-
planarizing 2-factors are, we developed simple programs to find embeddings of graphs
that have a 2-planarizing 2-factor. On one hand (a) we wrote a program generating all
possible embeddings of a given graph and combined it with a program searching for 2-
planarizing 2-factors in the embedded graphs and on the other hand (b) we developed a
program first searching for 2-factors and then trying to distribute the remaining edges to
two copies of the 2-factors by at the same time keeping the cycles of the 2-factors facial
cycles, the graphs plane, and finally having all cycles connected. Due to the enormous
number of possible embeddings already for small vertex numbers—especially in case of
large degrees—program (a) is much slower than program (b) and was only used as a
completely independent check.

With more theoretical background—focused on results that can be exploited by algorithms—
faster programs should be possible, but already these fairly simple programs applied to
large lists of regular graphs produced by the programs described in [3] and [8] allow some
insights. Results of program (b) are given in Table 1. In order to test the implementation,
we compared the number of graphs with a 2-planarizing 2-factor computed by the two
programs for all 3-regular graphs on up to 20 vertices, all 4-regular graphs on up to 11
vertices, and all graphs with degree sequences (0, 2, 2, 2, 2), (0, 2, 3, 2, 3), (0, 2, 2, 2, 2, 1),
and (0, 0, 2, 3, 2, 2). We had complete agreement.
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order 3-regular 3-regular 4-regular 5-regular 6-regular
girth 4

4 100 %
5 0 %
6 50 % 0 % 100 % 100 %
7 100 % 100 %
8 80 % 100 % 100 % 100 % 100 %
9 100 % 100 %
10 88.89 % 83.33 % 98.31 % 98.33 % 100 %
11 98.49 % 92.86 %
12 92.59 % 90.91 % 99.94 % 99.60 % 99.46 %
13 99.96 % 99.97 %
14 93.75 % 86.24 % 99.99 % 99.99 %
15 99.98 %
16 93.91 % 86.29 % 99.90 %
17 99.96 %
18 94.01 % 85.34 %
20 95.51 % 91.12 %
22 96.73 % 94.66 %
24 96.98 % 93.82 %
26 95.94 % 88.82 %

Table 1: The percentage of embedded graphs with a 2-planarizing 2-factor among the
bridgeless regular graphs with given vertex degree; rounded to two digits after the comma.
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