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Abstract. In 1978 Thomassen asked whether planar hypohamiltonian
oriented graphs exist. Infinite families of such graphs have since been de-
scribed but for infinitely many n it remained an open question whether
planar hypohamiltonian oriented graphs of order n exist. In this paper we
develop new methods for constructing hypohamiltonian digraphs, which,
combined with efficient graph generation algorithms, enable us to fully
characterise the orders for which planar hypohamiltonian oriented graphs
exist. Our novel methods also led us to discover the planar hypohamilto-
nian oriented graph of smallest order and size, as well as infinitely many
hypohamiltonian orientations of maximal planar graphs. Furthermore, we
answer a question related to a problem of Schiermeyer on vertex degrees in
hypohamiltonian oriented graphs, and characterise all the orders for which
planar hypotraceable oriented graphs exist.
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1 Introduction

An oriented graph is obtained from a graph by assigning a direction to each edge. We
regard an oriented graph simply as a digraph without 2-cycles. We identify a graph G

with the symmetric digraph
←→
G (the digraph obtained from G by replacing each edge with

two oppositely directed arcs), so that definitions that we state for digraphs apply also to
graphs. A digraph G is hypohamiltonian if every vertex-deleted subdigraph of G has a
hamiltonian cycle but G does not.

In 1978, answering a question of Murty, Thomassen [15] presented an infinite family of hy-
pohamiltonian oriented graphs. Every member of that family is nonplanar and 2-diregular
(i.e., each vertex has in-degree 2 and out-degree 2). In the same paper Thomassen proved
that there exists a planar hypohamiltonian digraph of order n for every n ≥ 6, albeit
containing many 2-cycles (half of the arcs are in 2-cycles) and he asked whether planar
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hypohamiltonian oriented graphs exist. This question remained open until 35 years later,
when van Aardt, Burger and Frick [1] showed that for every integer k ≥ 0 there exists a
planar hypohamiltonian oriented graph of order 9 + 12k. In [3] the same authors together
with Kemnitz and Schiermeyer [3] extended the result to cover orders 9+6k, k ≥ 0. It was
also shown in [1] that the smallest possible order of a planar hypohamiltonian oriented
graph is 9, but the question of smallest size was left open.

In Section 2 we develop new methods for constructing hypohamiltonian oriented graphs,
which we then use in Section 3 in combination with results obtained by computer to answer
several questions concerning planar hypohamiltonian oriented graphs.

In Section 3.1 we prove that there exists a planar hypohamiltonian oriented graph of or-
der n if and only if n = 9 or n ≥ 11. For undirected graphs such a characterisation is still
an open problem, despite significant recent efforts—it is known that a planar hypohamil-
tonian graph of order n exists if n = 40 or n ≥ 42, see [12], and that no such graph exists
on fewer than 23 vertices [9]. The situation for 23 ≤ n ≤ 39 and n = 41 is unknown, and
relates to a problem raised by Holton [11].

In Section 3.2 we show that there exists a planar hypohamiltonian oriented graph of
order n whose underlying undirected graph is a maximal planar graph if and only if
n = 9 or n ≥ 11. This is in stark contrast to the fact that no maximal planar graph is
hypohamiltonian: by Whitney’s theorem that 4-connected triangulations of the plane are
hamiltonian, any planar hypohamiltonian graph has a 3-vertex-cut. For triangulations,
this cut forms a separating triangle. A short argument involving the fact that removing
any vertex of this triangle yields a hamiltonian graph implies that the triangulation itself
is hamiltonian, a contradiction.

In an undirected hypohamiltonian graph every vertex has degree at least 3, so we say that
an undirected hypohamiltonian graph is edge-minimal if it is cubic (3-regular). It is well-
known that infinite families of edge-minimal planar hypohamiltonian graphs exist. In a
hypohamiltonian digraph, every vertex has in-degree at least 2 and out-degree at least 2,
so we call a hypohamiltonian digraph arc-minimal if it is 2-diregular. The nonplanar
hypohamiltonian oriented graphs constructed by Thomassen in [15] are all arc-minimal,
but no planar arc-minimal hypohamiltonian oriented graph has yet appeared in the litera-
ture. In Section 3.2 we construct a 9-vertex arc-minimal planar hypohamiltonian oriented
graph. We have not found any other arc-minimal planar hypohamiltonian oriented graph,
and our computational results show that there are none of order n for 9 < n < 25 (and
none on fewer than 9 vertices). However, we show that for infinitely many n there exist
planar hypohamiltonian oriented graphs of order n with only 2n + 1 arcs (we call these
almost arc-minimal).

During a talk given at the fourth Ilmenau-Košice DAAD Research Workshop held in
Heyda, Germany in March 2018, Schiermeyer raised the question whether every hypo-
hamiltonian oriented graph contains a vertex with in-degree as well as out-degree 2. We
call such a vertex quartic since its total degree is 4. One can see such vertices as analogous
to cubic vertices (vertices of degree 3) in undirected hypohamiltonian graphs. But while
Thomassen’s well-known question whether undirected hypohamiltonian graphs without
cubic vertices exist [15] remains open, Schiermeyer’s question admits a negative answer
by an infinite family of so-called 2-hypohamiltonian oriented graphs (which have in-degree
and out-degree at least 3) constructed in [4]. The members of that family also happen to be
hypohamiltonian but they are nonplanar. Thomassen [15] proved that every undirected
planar hypohamiltonian graph has a cubic vertex. It still remained an open question
whether every planar hypohamiltonian oriented graph has a quartic vertex. We answer

2



that question in Section 3.3.

A digraph G is hypotraceable if all of its vertex-deleted subgraphs are traceable (i.e., con-
tain a hamiltonian path), but G does not. Grötschel, Thomassen and Wakabayashi [10]
observed that if G is any hypohamiltonian digraph, then splitting an arbitrary vertex of
G into a source (a vertex with no incoming arcs) and a sink (a vertex with no outgoing
arcs) yields a hypotraceable digraph. However, the existence of planar hypohamiltonian
oriented graphs does not immediately imply the existence of planar hypotraceable oriented
graphs, since the vertex splitting operation does not necessarily retain planarity. Never-
theless, van Aardt, Burger and Frick [2] proved that there exists a planar hypotraceable
oriented graph of order n for every even n ≥ 10, with the possible exception of 14. Whether
planar hypotraceable oriented graphs of odd order or of order 14 exists is stated as an
open problem in [2]. In Section 4 we establish that there exists a planar hypotraceable
oriented graph of order n if and only if n ≥ 10.

For digraph notation and terminology we follow [5]. In particular, we denote the vertex
set and arc set of a digraph G by V (G) and A(G), respectively, and their respective
cardinalities are called the order and size of G. The converse G−1 of a digraph G is
obtained from G by reversing all orientations, i.e., each arc is replaced by an oppositely
directed arc. If G is hypohamiltonian, then so is G−1, but note that G and G−1 may be
isomorphic.

2 New construction methods

This section provides new techniques for constructing hypohamiltonian digraphs and, in
particular, planar hypohamiltonian oriented graphs.

2.1 The θ-replacement method

Throughout this section, k will denote an arbitrary positive integer.

A θ-graph is a graph isomorphic to K4 − e (the complete graph of order 4 with one edge
removed). We denote by θ the orientation of a θ-graph shown in Figure 1, i.e.,

θ = ({v1, v2, v3, v4}, {v1v2, v2v3, v3v1, v4v2, v3v4}).

Let Tk denote the oriented graph with vertex set {ai, bi, ci, di, ei, fi}ki=1 consisting of the
path a1b1c1d1e1f1 . . . akbkckdkekfk, together with all the arcs on the paths fkdkbk . . . f1d1b1
and ekckak . . . e1c1a1.

Let Tk(θ) be the disjoint union of θ− v2v3 and Tk, together with all the arcs on the paths
b1v2a1v1 and v4fkv3ek, as shown in Figure 1 on the right.

Now let G be a digraph of order n containing the oriented graph θ as induced subdigraph
(we call this a θ-subdigraph), and let Tk(G) be the digraph of order n+ 6k obtained from
G by replacing θ with Tk(θ).

If G is planar and v1v2v3v1 and v2v3v4v2 are facial triangles in the planar embedding of
G, then Tk(G) is also planar, and if G is an oriented graph, then so is Tk(G).

Our first result in this section provides conditions under which Tk(G) is hypohamiltonian.

Lemma 1. Let G be a hypohamiltonian digraph of order n containing the oriented graph
θ (labelled as in Figure 1) as induced subdigraph, such that
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(i) for every v ∈ V (G) there exists a hamiltonian cycle in G − v that contains at least
one of the arcs on the path v4v2v3v1, and

(ii) G − v1 or G − v4 contains a hamiltonian cycle using v4v2 or v3v1 respectively, but
not using v2v3.

Then Tk(G) is a hypohamiltonian digraph of order n+ 6k.

v2 v3
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v4

v2 v3

v1

v4

a1
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f1

a2
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· · ·

Figure 1: Replacing θ with Tk(θ).

Proof. For ease of notation we put

(af)i = aibicidieifi, (fb)i = fidieiciaibi, and (ea)i = eifidibiciai.

We first prove that Tk(G) is non-hamiltonian. Suppose, to the contrary, that there is a
hamiltonian cycle h in Tk(G). Seeing Tk as a subdigraph of Tk(G), we note that Tk is
attached to Tk(G) − Tk only by the in-going arcs v2a1, v3ek, v4fk and the out-going arcs
fkv3, a1v1, b1v2. Therefore, h contains either one of the four paths

Q1 = v2(af)1 . . . (af)kv3, Q2 = v3(ea)k . . . (ea)1v1, Q3 = v4(fb)k . . . (fb)1v2,

Q4 = v4fkv3ekckdkbkfk−1ak . . . e1c1d1b1v2a1v1,

or the disjoint union of two paths

Q5 = v3ekckak . . . e1c1a1v1 ∪ v4fkdkbkf1d1b1v2.

In each case we obtain a corresponding hamiltonian cycle in G by performing one of the
following replacements.

Q1 → v2v3, Q2 → v3v1, Q3 → v4v2, Q4 → v4v2v3v1, Q5 → v3v1 ∪ v4v2.
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But G is non-hamiltonian, so this proves that Tk(G) is also non-hamiltonian.

For each vertex v in G, we let hv be a hamiltonian cycle in G − v that satisfies (i). We
now show that Tk(G) − v is hamiltonian for every vertex v in Tk(G). We first consider
v /∈ V (Tk). Seeing v as a vertex in G, by (i) hv uses at least one of the arcs on the path
v4v2v3v1. If hv uses v2v3, we replace v2v3 with Q1, and if hv does not use v2v3, we either
replace v3v1 with Q2 or we replace v4v2 with Q3. In either case we obtain a hamiltonian
cycle of Tk(G)− v.

Next, we consider the following cases.

Case v ∈ {a1, d1}: By (i), v4v2 ∈ A(hv3). We replace this arc in hv3 by the v4v2-path
Q4 − a1 − v1 and obtain a hamiltonian cycle h′a1 of Tk(G) − a1. By replacing the path
c1d1b1 in h′a1 by c1a1b1, we also obtain a hamiltonian cycle of Tk(G)− d1.
Case v ∈ {b1, e1}: By (ii), we have a hamiltonian cycle in G − v1 that uses v4v2 but
not v2v3, or a hamiltonian cycle in G − v4 that uses v3v1 but not v2v3. But v4v2 can be
replaced by the path

v4(fb)k . . . (fb)2f1d1e1c1a1v1v2,

and v3v1 can be replaced by

v3v4(fb)k . . . (fb)2f1d1e1c1a1v1,

so in either case we obtain a hamiltonian cycle h′b1 of Tk(G) − b1. By replacing the path
d1e1c1 in h′b1 by the path d1b1c1, we also obtain a hamiltonian cycle of Tk(G)− e1.
Case v ∈ {c1, f1}: By (i), v3v1 ∈ A(hv2). Replacing the arc v3v1 with the path

v3(ea)k . . . (ea)2e1f1d1b1v2a1v1,

we obtain a hamiltonian cycle h′c1 of G− c1, which can be modified to a hamiltonian cycle
of Tk(G)− f1 by replacing in h′c1 the path e1f1d1 by e1c1d1.

The generalisations to ai, bi, ci, di, ei, fi for i > 1 are straightforward due to the periodicity
of our construction. We exhibit the case ai and leave the remainder to the reader. A
hamiltonian cycle of Tk(G)−ai is obtained from the hamiltonian cycle h′a1 defined earlier,
by replacing the v4v2-subpath of h′a1 by the path

v4fkv3ekckdkbkfk−1ak . . . ei+1ci+1di+1bi+1fiai+1eicidibi(fb)i−1 . . . (fb)1v2.

We conclude that every vertex-deleted subdigraph of Tk(G) is hamiltonian. This completes
the proof.

The operation from Lemma 1 increases the degrees of the vertices v1, v2, v3, v4. This can
be an obstacle if we wish to construct hypohamiltonian oriented graphs of small size. But
the only reason why Lemma 1 requires that {v4v2, v3v1} ⊂ A(Tk(G)), is that a hamiltonian
cycle in G− v that contains the path v4v2v3 or the path v2v3v1 converts to a hamiltonian
cycle in Tk(G) that necessarily contains an arc in {v4v2, v3v1}. Thus we have the following
variant of Lemma 1, which we shall use in Section 3.2 to construct planar hypohamiltonian
oriented graphs of small size.

Lemma 2. Let G be a hypohamiltonian digraph of order n satisfying the conditions of
Lemma 1 plus the following condition (which is stronger than Lemma 1 (i)).

(i)+ For any v ∈ V (G) there is a hamiltonian cycle in G− v that contains at least one of
the arcs on the path v4v2v3v1 but contains neither the path v4v2v3 nor the path v2v3v1.

Then Tk(G) − v4v2 − v3v1 is a hypohamiltonian oriented graph. Moreover, if G is arc-
minimal, then so is Tk(G)− v4v2 − v3v1.
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For the construction of planar hypohamiltonian oriented graphs of larger size we shall use
the following lemma.

Lemma 3. Let G be a planar hypohamiltonian digraph that satisfies the conditions of
Lemma 1 plus the condition

(iii) v1v2v3v1 and v2v3v4v2 are facial triangles in the planar embedding of G

and let
A = {v4bi, v4di, v4fi, aiv1, civ1, eiv1}ki=1 \ {v4fk, a1v1}.

Then Tk(G) ∪ A is a planar hypohamiltonian oriented graph for every subset A of A. If
G is an orientation of a maximal planar graph, then so is Tk(G) ∪ A.

Proof. Condition (iii) implies that Tk(G)∪A is planar. By Lemma 1, Tk(G) is hypohamil-
tonian, so it follows that for every A ⊂ A, every vertex-deleted subdigraph of Tk(G) ∪ A
is hamiltonian. Thus, to complete the proof, we only need to show that Tk(G) ∪ A is
non-hamiltonian.

Suppose, to the contrary, that Tk(G)∪A contains a hamiltonian cycle h. By construction,
at most two arcs in A ∪ {v4v2, v3v1} lie in h. Since Tk(G) is non-hamiltonian, h contains
at least one arc in A. We treat the case where this arc is civ1, i ∈ {2, . . . , k − 1}. The
proof for the other arcs in A is essentially the same. The predecessor of ci on the cycle h
is either bi or ei, so we consider two cases.

Case bici ∈ A(h). Inspecting the out-neighbours of ai we see that either (1) aibi ∈ A(h)
or (2) aiei−1 ∈ A(h). In case (1), since the out-neighbours of di are bi and ei and we have
already visited bi, we have

h ∩ Tk(θ) = v2(af)1 . . . (af)i−1aibiciv1 ∪ v4dieifi(af)i+1 . . . (af)kv3,

which contradicts the planarity of Tk(G). In case (2), as fi−1ai ∈ A(h) we necessarily have
v4fi−1aiei−1ci−1 ⊂ A(h), but then h cannot contain all the vertices in {aj , bj , cj , dj , ej , fj}i−1j=1,
a contradiction.

Case eici ∈ A(h). Then fi−1ai ∈ A(h). Since aibi ∈ A(h) directly leads to a contradiction
(as the only remaining available out-neighbour of bi is fi−1), it follows that aiei−1 ∈ A(h).
Similarly, bifi−1 ∈ A(h). Therefore ei−1ci−1 ∈ A(h). We observe that if ci−1di−1 /∈ A(h),
then necessarily v4di−1 ∈ A(h), which leads to a contradiction, so ci−1di−1 ∈ A(h). But
then we again have a contradiction, since not all vertices from {aj , bj , cj , dj , ej , fj}i−1j=1 can
lie in h.

2.2 Extending Thomassen’s gluing method

Suppose G is a digraph with a vertex-cut X = {x0, x1, x2} such that G−X consists of two
components, G1 and G2. Let Fi = G[V (Gi) ∪X], i ∈ {1, 2}. Then F1 and F2 are called
3-fragments of G with attachments x0, x1, x2, or simply X-fragments. A 3-fragment of a
hypohamiltonian digraph is called trivial if its underlying graph is isomorphic to K1,3.

Thomassen [15] showed that 3-fragments of undirected hypohamiltonian graphs can be
glued together, forming a hypohamiltonian graph. More precisely, he proved the following.

Theorem 4. [15] If Fi is an {xi0, xi1, xi2}-fragment of a hypohamiltonian graph Gi, i ∈
{1, 2}, with F1 and F2 not both trivial, then identifying x1j with x2j for j ∈ {0, 1, 2}, we
obtain a hypohamiltonian graph.

The proof of Theorem 4 follows from the following lemma.

6



Lemma 5. [15] If F is a non-trivial {x0, x1, x2}-fragment of a hypohamiltonian graph,
then F satisfies the following two conditions.

(a) F does not have a hamiltonian xjxk-path for any j, k ∈ {0, 1, 2} with j 6= k.

(b) For each v ∈ V (F ), there exist j, k ∈ {0, 1, 2} with j 6= k such that F − v has a
hamiltonian xjxk-path.

Conversely, if F is a graph containing an independent set {x0, x1, x2} and F satisfies (a)
and (b), then F is an {x0, x1, x2}-fragment of some hypohamiltonian graph.

Throughout this section, (a) and (b) will refer to conditions (a) and (b) of Lemma 5.

If Fi is a graph satisfying (a) and (b) with respect to an independent subset Xi =
{xi0, xi1, xi2} of V (Fi), i ∈ {1, 2}, then applying Thomassen’s gluing procedure to F1

and F2 results in a hypohamiltonian graph. Unfortunately, in general we cannot guaran-
tee that a non-trivial X-fragment of a hypohamiltonian digraph necessarily satisfies (a)
and (b). Thus Theorem 4 does not immediately extend to digraphs. However, the second
part of Lemma 5 holds for digraphs in general, because if F is a digraph satisfying (a) and
(b), then we can obtain a hypohamiltonian digraph by applying the gluing procedure to

F and
←−→
K1,3.

In order to devise workable gluing procedures for the construction of hypohamiltonian
digraphs, we define three conditions that are stronger than (b) for a digraph F containing
an independent set X = {x0, x1, x2}.

(b1) F satisfies (b) and additionally, F − x` has a hamiltonian xjxk-path for all pairwise
distinct j, k, ` ∈ {0, 1, 2}.

(b2) For every v ∈ V (F ) the subdigraph F − v has a hamiltonian xixi+1-path for some
i ∈ {0, 1, 2}. We assume here that x0, x1, x2 is an ordered triple, and we take indices
mod 3.

(b3) For each v ∈ V (F ), there exist j, k ∈ {0, 1, 2} with j 6= k such that F − v as well as
F − x` has a hamiltonian xjxk-path, where {`} = {0, 1, 2} \ {j, k}.

Let F be a digraph containing an independent set X = {x0, x1, x2}. Then we say that

F is X-good if F satisfies (a) and (b1),

F is X-nice if F satisfies (a) and (b2), and

F is X-fair if F satisfies (a) and (b3).

We note that (b1) implies (b3), and (b2) implies (b3), so X-good digraphs as well as X-
nice digraphs are X-fair. The converse implications do not hold. For example, the oriented
graph Z6, labelled as in Figure 3, is X-nice (and hence also X-fair) but not X-good, since
it satisfies the following condition:

(z) For j ∈ {0, 1, 2}, each of the subdigraphs F − xj and F − vj has a hamiltonian
xj+1xj+2-path, but no other hamiltonian path that starts and ends in {x0, x1, x2}.
If an X-good digraph is not X-nice with respect to a given ordering of the vertices in X, it
might still be X-nice with respect to a different ordering. We do not know whether every
X-good digraph is X-nice with respect to some labelling of the vertices.

Our next lemma provides three gluing results for the construction of hypohamiltonian
digraphs. Therein, an X-fragment is called arc-minimal if every vertex in X has in-
degree 1 and out-degree 1, and all other vertices have in-degree 2 and out-degree 2.
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Lemma 6. For i ∈ {1, 2}, let Fi be a digraph of order at least 5 containing an independent
set {xi0, xi1, xi2}.

(1) If Fi is {xi0, xi1, xi2}-good, i ∈ {1, 2}, then the digraph H1, obtained by identifying
x1j with x2j for j ∈ {0, 1, 2}, is hypohamiltonian.

(2) If Fi is {xi0, xi1, xi2}-nice, i ∈ {1, 2} then the digraph H2, obtained by identifying
x10 with x20, x11 with x22, and x12 with x21, is hypohamiltonian.

(3) Let F be an {x0, x1, x2}-fair digraph and denote by x′0, x
′
1, x
′
2 the vertices in F−1

corresponding to x0, x1, x2, respectively. Then the digraph H3, obtained by identifying
xj with x′j for j ∈ {0, 1, 2}, is hypohamiltonian.

In either statement, if both fragments are oriented graphs, then so is the resulting graph; if
both fragments are plane digraphs and their attachments cofacial, the identification can be
performed such that the resulting digraph is planar; and if both fragments are arc-minimal,
then so is the resulting digraph.

Proof.

(1) We denote by xj the vertex that results from the identification of x1j with x2j ,
j ∈ {0, 1, 2}, and we see F1 and F2 as subdigraphs of H1. If h is a hamiltonian
cycle of H1, then we may assume without loss of generality that the intersection of
h with F1 is a hamiltonian x1x2-path of F1 − x0, and the intersection with F2 is a
hamiltonian x2x1-path of F2. But since F2 satisfies (a), this is not possible, so H1 is
non-hamiltonian.

Now let v ∈ V (H1). Without loss of generality we may assume that v ∈ V (F1).
Then, since F1 satisfies (b1), there exist j, k ∈ {0, 1, 2} with j 6= k such that F − v
has a hamiltonian xjxk-path p1. Now let {`} = {0, 1, 2} \ {j, k}. Then, since F2

satisfies (b1), the subdigraph F2− x` has a hamiltonian xkxj-path p2. The paths p1
and p2 together form a hamiltonian cycle of H1 − v.

(2) As in (1), the fact that F1 and F2 both satisfy (a) implies that H2 is non-hamiltonian.
Now suppose v ∈ V (F1). Then, since F1 satisfies (b2), we may assume without loss
of generality that F1 − v has a hamiltonian x11x12-path p1. In the construction of
H2, the vertex x12 was identified with x21, and x11 was identified with x22. Since F2

satisfies (b2), there is a hamiltonian x21x22-path p2 in F2 − x20. The paths p1 and
p2 together form a hamiltonian cycle of H2 − v. Hence H2 is hypohamiltonian.

(3) Since F , and hence also F−1, satisfy (a), it follows that H3 is non-hamiltonian.
Now suppose v ∈ V (F ). Then, as F satisfies (b3), we may assume without loss of
generality that F − v has a hamiltonian x1x2-path p1 and F − x0 has a hamiltonian
x1x2-path. Since F−1 is the converse of F , it follows that F−1−x′0 has a hamiltonian
x′2x

′
1-path p2. The paths p1 and p2 together form a hamiltonian cycle of H3 − v.

The vertex-deleted Petersen graph P ′ is the smallest undirected graph that satisfies (a)
and (b). It forms the basis for several constructions of hypohamiltonian and hypotraceable
graphs found in the literature. The oriented graph Z6, shown in Figure 3 may be regarded
as the directed analogue of P ′, since it is the smallest digraph that satisfies (a) and
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(b). The smallest hypotraceable oriented graph can be obtained from Z6 by adding a
source and a sink (as shown in [1]) and, as will be shown in Section 3.2, the smallest
planar hypohamiltonian oriented graph (depicted in Figure 3 on the right) is obtained
by gluing together two copies of Z6. Our next construction also uses Z6 to construct
hypohamiltonian oriented graphs from given ones.

2.3 Inserting Z6 into a suitable triangle

In this section we describe another transformation, which we call S, for planar hypohamil-
tonian oriented graphs. Unfortunately, applying S to a planar hypohamiltonian oriented
graph G does not guarantee that we can apply S to S(G), as well. This was also the case
for the operations replacing a θ-subdigraph, but these operations could add 6k vertices
for any k ≥ 1, while S only adds three vertices. Still, it will prove to be useful in the next
section, and our computational experiments seem to indicate that a sufficient proportion
of planar hypohamiltonian oriented graphs meet the requirements for applying S in order
to warrant its inclusion (e.g. 14% for order 13 and 52% for order 14).

If ∆ = x0x1x2x0 is a 3-cycle in a hypohamiltonian oriented graph G, then we say that ∆
is a suitable triangle of G if for every v ∈ V (G), the subdigraph G− v has a hamiltonian
cycle that contains at least one arc of ∆.

Lemma 7. Suppose G is a hypohamiltonian oriented graph of order n that contains a
suitable triangle ∆ = x′0x

′
1x
′
2x
′
0. Let S(G,∆) be the digraph obtained from the disjoint

union of G and Z6 (labelled as in Figure 3), by identifying the vertices xi and x′i for
i ∈ {0, 1, 2}. Then S(G,∆) is a hypohamiltonian oriented graph of order n + 3. If G is
planar and ∆ a facial triangle in the planar embedding of G, then S(G,∆) is planar, as
well.

Proof. We denote by F the copy of Z6 in S(G,∆). We see G as a subdigraph of S(G,∆),
but we change the label of x′i in G to xi, i ∈ {0, 1, 2} so that F retains the labelling of Z6.
We use the fact that Z6 satisfies the conditions (a) and (z) defined earlier.

Suppose S(G,∆) has a hamiltonian cycle h. Then, since F satisfies (a) and (z), the
intersection of h with F is an xi+1xi+2-path pi that spans F − xi for some i ∈ {0, 1, 2}.
But then replacing pi with the arc xi+1xi+2 yields a hamiltonian cycle ofG, a contradiction.
Thus S(G,∆) is not hamiltonian.

If u ∈ V (G), then since ∆ is a suitable triangle in G, we have that G−u has a hamiltonian
cycle that contains the arc xixi+1 for some j ∈ {0, 1, 2}. By (z), this arc can be replaced in
F with an xixi+1-path that spans F−xi−1. This yields a hamiltonian cycle of S(G,∆)−u.

Now consider G− vi, i ∈ {0, 1, 2}. As ∆ is a suitable triangle in G, the graph G− xi has
a hamiltonian cycle that contains the arc xi+1xi+2. By (z), this arc can be replaced with
an xi+1xi+2-path that spans F − vi. This yields a hamiltonian cycle of S(G,∆)− vi.

3 Planar Hypohamiltonian Oriented Graphs

3.1 Covering all orders

We determined by computer the exact counts of planar hypohamiltonian oriented graphs
on at most 15 vertices, see Table 1. In particular, we confirmed the result from [1] that
no oriented graph on fewer than 9 vertices is hypohamiltonian, and we established that
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Figure 2: The planar hypohamiltonian oriented graphs of order 9, 11, 12, 13, 14, and 16
used in the proof of Theorem 8. The required θ-subdigraphs are shown in bold.

no planar hypohamiltonian oriented graph of order 10 exists (although a nonplanar hypo-
hamiltonian oriented graph of order 10 is presented in [3]). The (undirected) underlying
graphs were generated using plantri [6]. These graphs were then oriented using directg

from Nauty [13] with some additional bounding. The oriented graphs were finally checked
for being hypohamiltonian using a straightforward branch-and-bound algorithm that veri-
fies the (non-)existence of certain cycles. For 15 vertices around 1.4×1013 oriented graphs
needed to be checked for being hypohamiltonian. The programs and details on how to
reconstruct these computations are available at [16].

We now characterise all orders for which planar hypohamiltonian oriented graphs exist.

Theorem 8. There exists a planar hypohamiltonian oriented graph of order n if and only
if n = 9 or n ≥ 11.

Proof. In Figure 2 we present for each n ∈ {9, 11, 12, 13, 14, 16} a planar hypohamiltonian
oriented graph G of order n that satisfies the conditions of Lemma 3. The required θ-
subdigraphs are shown in bold. For the 9-vertex oriented graph we explicitly show in
the Appendix that each of the vertex-deleted subdigraphs contains a hamiltonian cycle
satisfying the conditions of Lemma 1. The remaining such verifications are left to the
reader. By applying the operation from Lemma 3 (with A any subset of A) to each of
these six oriented graphs, we obtain a planar hypohamiltonian oriented graph of order n
for every n ≥ 9, except for n = 10. From our computational results mentioned above, we
already know that there does not exist a hypohamiltonian oriented graph of order 10 or
of order less than 9.

Our computational experiments seem to indicate that the number of planar hypohamil-
tonian oriented graphs grows at least exponentially with respect to their order. However,

10



n Oriented graphs Underlying graphs Time

9 25 9 0.03 seconds
10 0 0 0.76 seconds
11 4 3 34.58 seconds
12 10 4 28.4 minutes
13 367 71 1.1 days
14 6464 638 59.4 days
15 1422362 22767 9.3 years

Table 1: Overview of the number of planar hypohamiltonian oriented graphs for small
orders and the total CPU time needed to generate them on a cluster of Intel Sandy Bridge
(E5-2670) running at 2.6 GHz.

the best we have proved so far is the following.

Theorem 9. For every n ≥ 9 except 10 there exist at least max{1, 6 · bn−116 c−1} pairwise
non-isomorphic planar hypohamiltonian oriented graphs.

Proof. We apply Lemma 3 exactly as in the proof of Theorem 8, but add the arcs of A
one-by-one: If G is one of the graphs from Figure 2, then in Tk(G) we can add any number
of arcs from A and thus obtain graphs of order |V (Tk(G))| = |V (G)|+ 6k and size m for
any m ∈ {|A(Tk(G))|, . . . , |A(Tk(G))|+ 6k− 2}, a set of cardinality 6k− 1. From this the
advertised counts follow.

We have not found any result on the growth rate of undirected planar hypohamiltonian
graphs in the literature, although Collier and Schmeichel [8] have shown that the growth
rate of nonplanar hypohamiltonian graphs is at least exponential. Skupień [14] has shown
that this even remains true for cubic hypohamiltonian graphs (in fact, even for hypohamil-
tonian snarks).

3.2 Maximising and minimising size

We call a planar hypohamiltonian oriented graph of order n arc-minimal if it has exactly
2n arcs (i.e., if it is 2-diregular) and arc-maximal if it has 3n − 6 arcs (i.e., if it is an
orientation of a maximal planar graph).

From Lemma 3, we deduce the following.

Theorem 10. There exists an arc-maximal planar hypohamiltonian oriented graph of
order n if and only if n = 9 or n ≥ 11.

Proof. The underlying graphs of all the oriented graphs in Figure 2 are triangulations of
the plane, so the result follows by applying Lemma 3 to each of these six oriented graphs,
with A = A.

Our search for arc-minimal planar hypohamiltonian oriented graphs has turned out to be
less successful. We know only the following.
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x0

x2

x1

v0

v2

v1

Figure 3: Left-hand side: The digraph Z6. Right-hand side: The smallest planar hypo-
hamiltonian oriented graph

Theorem 11. There exists an arc-minimal planar hypohamiltonian oriented graph of
order 9, and no other such graph of order less than 25. If there exists a planar arc-
minimal hypohamiltonian oriented graph satisfying the properties of Lemma 2, then there
exist infinitely many planar arc-minimal hypohamiltonian oriented graphs.

Proof. It is easily seen that the oriented graph Z6 (labelled as in Figure 3) is {x0, x1, x2}-
nice as well as {x0, x1, x2}-fair and it is isomorphic to its converse. Thus, by applying
either (2) or (3) of Lemma 6, we obtain that the oriented graph on the right in Figure 3
is hypohamiltonian. This proves the first part of the theorem.

The second part was obtained using a computer. The underlying graphs were generated
using plantri [6]. These graphs were then oriented using watercluster2 [7]. The oriented
graphs were finally checked for being hypohamiltonian using a straightforward branch-and-
bound algorithm that checks for the (non-)existence of certain cycles. To verify the case
of 24 vertices in excess of 1.21 × 1012 oriented graphs needed to be checked for being
hypohamiltonian and on a cluster of Intel Sandy Bridge (E5-2670) running at 2.6 GHz
the computation took 3.9 CPU-years. The programs and details on how to reconstruct
these computations are available at [16]. The final statement follows immediately from
Lemma 2 since the planarity of Tk(G) also implies the planarity of Tk(G)−v4v2−v3v1.

Unfortunately, at this point we know of only one arc-minimal planar hypohamiltonian
oriented graph, and it does not satisfy the property (i)+ of Lemma 2 with respect to any
of its induced θ-subdigraphs. However, we now show that for infinitely many n there exist
planar hypohamiltonian oriented graphs of order n and size 2n+ 1.

Theorem 12. There exists an almost arc-minimal planar hypohamiltonian oriented graph
of order 3 + 6k for every k ≥ 1, but none of order 10, 11, 12, 13, 14 or 16.

Proof. We apply Lemma 2 to the graph shown in Figure 4 (see its caption for further
details, in particular the location of the θ-subdigraph). This graph is constructed by adding
an arc to the arc-minimal planar hypohamiltonian oriented graph shown in Figure 3. The
second part was obtained using a computer.

An overview of the number of planar hypohamiltonian oriented graphs with a specific
number of arcs for small orders is given in Table 2. This table shows how, contrary to the
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Figure 4: One of the two smallest almost arc-minimal planar hypohamiltonian oriented
graphs. Together with the highlighted θ-subdigraph this forms the basis for an infinite
family of almost arc-minimal planar hypohamiltonian oriented graphs.

non-oriented case, for planar hypohamiltonian oriented graphs the case of few arcs is the
challenging part, not many arcs.

3.3 Planar hypohamiltonian oriented graphs without quartic vertices

As mentioned in Section 1, Thomassen [15] proved that every undirected planar hypo-
hamiltonian graph has a cubic vertex, so it seems natural to ask whether every planar
hypohamiltonian oriented graph has a quartic vertex. Our next result provides a negative
answer to this question—its veracity is proved by the oriented graph shown in Figure 5.

Theorem 13. There exists a planar hypohamiltonian oriented graph whose underlying
graph has minimum degree 5.

In fact, a computer search yielded eight such graphs on 15 vertices, but none on fewer
vertices. It remains an open question whether an infinite family of such oriented graphs
exists. Note that applying the operation from Lemma 3—which is the variant of the
lemmas in Section 2.1 that gives the highest degrees—always adds a vertex of degree 4.

4 Planar Hypotraceable Oriented Graphs

In this section we fully characterise the orders for which planar hypotraceable oriented
graphs exist.

As mentioned in Section 1, van Aardt, Burger and Frick [2] showed that there exist planar
hypotraceable oriented graphs of order 10 and 12 and every even order greater than 14.
They also proved that there exist strong planar hypotraceable oriented graphs of order 6k
and 6k + 2 for every k ≥ 3. Their proofs rely on the following two lemmas. The first of
these is an adaptation of a result of Grötschel, Thomassen, and Wakabayashi [10].

Lemma 14. [10] For i ∈ {1, 2}, let Ti be a plane hypotraceable oriented graph of order
ni, with a source xi and a sink zi such that xi and zi are cofacial, and x1 and z1 are
independent. In the disjoint union of T1 and T2, identify x1 and z2 to a single vertex and
identify z1 and x2 to a single vertex. The result is a strong planar hypotraceable oriented
graph of order n1 + n2 − 2.
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Figure 5: One of the eight smallest planar hypohamiltonian oriented graphs for which the
underlying graph has minimum degree 5. It has 15 vertices.

Lemma 15. [2] For every k ≥ 1 there exists a plane hypotraceable oriented graph order
6k+ 4 containing a source and a sink that are cofacial and independent. There also exists
such an oriented graph of order 12.

We now prove the following.

Theorem 16. There exists a planar hypotraceable oriented graph of order n if and only if
n ≥ 10. Furthermore, up to 13 vertices all of these graphs have both a sink and a source.
There also exists a strong planar hypotraceable oriented graph of order n for every n ≥ 18.

Proof. The non-existence in the first statement and the second statement were shown by
computer (see Table 3). The underlying graphs were generated using plantri [6] with a
custom plug-in to guarantee certain degree conditions. These graphs were then oriented
using directg from Nauty [13] with some additional bounding. The oriented graphs
were finally checked for being hypotraceable using a straightforward branch-and-bound
algorithm that checks for the (non-)existence of certain paths. For 13 vertices around
1.12× 1012 oriented graphs needed to be checked for being hypotraceable. The programs
and details on how to reconstruct these computations are available at [16].

n Oriented graphs Underlying graphs Time

10 12 9 2.2 minutes
11 103 51 1.7 hours
12 221 111 4.3 days
13 10412 2800 223.3 days

Table 3: Overview of the number of planar hypotraceable oriented graphs for small orders
and the total CPU time needed to generate them on a cluster of Intel Sandy Bridge
(E5-2670) running at 2.6 GHz.

Figure 6 presents plane hypotraceable oriented graph of orders 11, 13, 14, 15, and 17, each
having a source and a sink that are cofacial. The graphs on 11 and 13 vertices were taken
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Figure 6: Planar hypotraceable oriented graphs of order 11, 13, 14, 15, and 17 as required
in the proof of Theorem 16. In each the sink and source are emphasised.

from the exhaustive lists generated for the first part of this proof. The other three graphs
were obtained from planar hypohamiltonian oriented graphs by splitting a suitable vertex
(i.e., a vertex that can be split without destroying the planarity). We note that there is,
up to its converse, only one planar hypohamiltonian oriented graph of order 13 containing
a suitable vertex. By applying Lemma 7 to that oriented graph (i.e., by inserting a Z6 into
a suitable triangle), we obtain a planar hypohamiltonian oriented graph of order 16 that
contains a suitable vertex, and splitting that vertex results in the hypotraceable oriented
graph of order 17 shown in Figure 6.

Using Lemma 14 to combine the plane hypotraceable oriented graphs given in Figure 6
with those of order 6k + 4 provided by Lemma 15, we obtain, for each k ≥ 3, a strong
planar hypotraceable oriented graphs of order 6k + 1, 6k + 3, 6k + 4 and 6k + 5. These,
together with the strong planar hypotraceable oriented graphs of order 6k and 6k + 2 for
k ≥ 3 found in [2], cover all orders from 18 upwards, so we have proved the result for the
strong case. Now we add the planar hypotraceable oriented graphs shown in Figure 6 and
those of order 10 and 12 presented in [2], and we have a planar hypohamiltonian oriented
graph of order n for every n ≥ 10.

5 Discussion

1. Planar arc-minimal hypohamiltonian digraphs. We have discussed in this article
planar hypohamiltonian oriented graphs of small size, showing that there exist infinitely
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many such graphs of order n and size 2n + 1. We recall that hypohamiltonian oriented
graphs cannot have fewer than 2n arcs. Since we were only able to find one example of
size 2n, see Figure 3, we relax the problem and ask here whether an infinite family of
planar arc-minimal hypohamiltonian digraphs with a sublinear number of 2-cycles exists.

We note that Thomassen [15] showed that
−→
C 2 ×

−→
C k, k ≥ 3 odd, is a planar arc-minimal

hypohamiltonian digraph containing exactly k 2-cycles.

2. Thomassen’s problem. We recall Problem 10 from Thomassen’s 1978 paper [15]:
Does there exist a hypohamiltonian oriented graph whose underlying graph is also hypo-
hamiltonian? Certainly, such a graph would be nonplanar, since every planar hypohamil-
tonian graph contains a cubic vertex [15], while the underlying graph of a hypohamiltonian
oriented graph has minimum degree at least 4. We note that no hypohamiltonian graphs
of minimum degree at least 4 are known ([15, Problem 4]).

3. Girth. For the undirected case, girth has been a widely studied property of hypo-
hamiltonian graphs. Currently the literature contains infinite families of hypohamiltonian
graphs of girth g for 3 ≤ g ≤ 7, but no example of girth greater than 7 is known (see [9]
and further references therein). Infinite families of planar hypohamiltonian graphs of girth
3, 4, and 5 exist, and no other girths are possible. Thus, planar hypohamiltonian digraphs
of girth 3, 4 or 5 are immediately obtained. Our question is: Do planar hypohamiltonian
oriented graphs of girth greater than 3 exist? Since the minimum degree of a hypohamil-
tonian oriented graph is at least 4, the Euler formula for plane graphs implies that the
underlying graph of a planar hypohamiltonian oriented graph contains at least eight tri-
angles. However those triangles need not be oriented cycles. We note that every oriented
graph constructed in this paper has girth 3. Thomassen’s constructions from [15] yield

a toroidal hypohamiltonian oriented graph of girth g for any g ≥ 3, e.g.,
−→
Cg ×

−→
C 2g−1 is

hypohamiltonian.
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6 Appendix

In Figure 7 we show all (n−1)-cycles for the 9-vertex graph from Figure 2 that are needed
in order to apply Lemma 3.

Figure 7: All (n− 1)-cycles for the 9-vertex graph from Figure 2 that are needed in order
to apply Lemma 3. Note that when missing the top or bottom vertex of the θ-subdigraph
the cycle indeed uses one of the remaining edges, but not the central edge.
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