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Abstract

A 2-connected non-hamiltonian graph G is a k-graph if for exactly k < |V(G)| vertices in G, removing such a vertex yields a
non-hamiltonian graph. We characterise k-graphs of connectivity 2 and describe structurally interesting examples of such graphs
containing no cubic vertex or of minimum degree at least 4, with a special emphasis on the planar case. We prove that there exists
a k0 such that for every k ≥ k0 infinitely many planar k-graphs of connectivity 2 and minimum degree 4 exist. As a variation of a
result of Thomassen, we show that certain planar 3-graphs must contain a cubic vertex.
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1. Introduction

We shall here investigate the hamiltonian properties of
graphs and their vertex-deleted subgraphs, in particular in rela-
tion to planarity, connectivity, and vertex degrees. Our main fo-
cus will lie on a natural extension of hypohamiltonicity, a con-
cept which has been applied in combinatorial optimisation—
determining facets of the travelling salesman polytope [5, 6]—
as well as coding theory [9]. Applications related to hypohamil-
tonicity also appear in the context of designing fault-tolerant
networks, see for instance Chapter 12 of [7], [8], or, in this jour-
nal, [15]. Moreover, various graph generation algorithms have
been designed for hypohamiltonian graphs and related fami-
lies [1, 4].

Extending Tutte’s famous theorem that every 4-connected
planar graph is hamiltonian [13], Thomassen showed that a
planar graph with minimum degree at least 4 in which every
vertex-deleted subgraph is hamiltonian, must itself be hamilto-
nian [11]. We will refer to this result of Thomassen as (T1). The
author recently extended (T1) and proved that a planar graph
with minimum degree at least 4 in which at most five vertex-
deleted subgraphs are non-hamiltonian, must itself be hamil-
tonian [23]. Now consider the following statement (T2): A
planar graph without cubic vertices in which all vertex-deleted
subgraphs are hamiltonian, must itself be hamiltonian. Since a
graph in which every vertex-deleted subgraph is hamiltonian is
3-connected, (T1) and (T2) are equivalent. However, in (T2)
“all” can be replaced by “all but one” [21], but not by “all but
two”, as illustrated by the join of K2 and 3K1, see Fig. 1 (al-
though we must admit that this is the only exception we are
aware of). So if we allow vertices of degree 2, there is a quali-
tative difference between the extendability of (T1) and (T2), and
it is this problem and more generally the connectivity 2 case we

focus on here. Going back to (T1), we note that the general
3-connected case—i.e. the question whether a graph with min-
imum degree at least 4 in which every vertex-deleted subgraph
is hamiltonian, must itself be hamiltonian—constitutes an old
open problem of Thomassen [11].

Consider the following partition of the family of all 2-
connected n-vertex graphs of circumference n − 1 introduced
in [21]. Let G be such a graph and let exc(G) ⊂ V(G) be the
set of all vertices w in G such that the graph G − w is non-
hamiltonian. (We do not consider K1 to be hamiltonian.) A ver-
tex from exc(G) is exceptional. Put nexc(G) = V(G) \ exc(G).
Throughout this paper, figures will show exceptional vertices
in white and non-exceptional vertices in black unless explicitly
stated otherwise. We call a 2-connected non-hamiltonian graph
G with |exc(G)| = k < |V(G)| a k-graph. A 0-graph is hypo-
hamiltonian, and a 1-graph is almost hypohamiltonian. Planar
3-connected graphs will be called polyhedral. A graph is plane
if it is planar and embedded in the Euclidean plane.

For k ∈ {0, 1}, k-graphs are 3-connected, but for k ≥ 2, k-
graphs of connectivity 2 exist. We investigate in this paper k-
graphs of connectivity 2 with a special emphasis on the planar
case and the cases for which k ≥ 2 is small. Motivated by (T1),
we study planar k-graphs of connectivity 2 and of minimum
degree 4. Furthermore, in the light of (T2), we investigate pla-
nar k-graphs without cubic vertices. We will also discuss the
general, i.e. not necessarily planar, versions of these problems.
In preparation, we now introduce further notation and then de-
scribe the structure of k-graphs of connectivity 2. Thereafter,
we show that for fixed k, there exist infinitely many (planar)
k-graphs of connectivity 2 with various conditions imposed on
their vertex degrees. The article ends with a structural result on
the presence of a cubic vertex in certain planar 3-graphs, which
complements (T2).
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A vertex shall be called k-valent if it has degree k. When
we speak of a cut, we always refer to a vertex-cut, i.e. a set
of vertices whose removal increases the number of connected
components. A k-cut shall be a cut containing exactly k ver-
tices. Let G be a k-connected graph containing a k-cut X. The
set of all components of G − X will be denoted by C(G − X),
and we put c(G − X) := |C(G − X)|. For C ∈ C(G − X), we
call G[V(C) ∪ X] a k-fragment of G with attachments X, which
we sometimes shorten to X-fragment. An X-fragment is triv-
ial if it contains exactly k + 1 vertices. A cut X of G is trivial
if K1 ∈ C(G − X). We call a component of G − X or a frag-
ment of G with attachments X non-exceptional if it contains a
non-exceptional vertex of G, and exceptional otherwise. For
k = 2, denote with X2(G) the set of all 2-cuts of G whose re-
moval splits G into exactly two components. A path with end-
points v and w is a vw-path. Let FX be the set of all 2-fragments
with attachments X. F ∈ F{x,y} is good if it contains a hamil-
tonian xy-path, and F is locally xy-hypohamiltonian if F is not
good, but for every vertex v in F − x − y, the graph F − v is
good. The join of two disjoint graphs G and G′ is the graph
denoted by G + G′, with vertex set V(G) ∪ V(G′) and edge set
E(G) ∪ E(G′) ∪ {vv′ : v ∈ V(G), v′ ∈ V(G′)}.

Finally, we will also need the following definitions. Let G
be a graph. We call a pair of vertices (a, b) in G good if there
exists a hamiltonian ab-path in G. A pair of pairs of vertices
((a, b), (c, d)) in G is good if there exists an ab-path P and a
cd-path Q such that P and Q are disjoint, and P ∪ Q spans
G. Following Hsu and Lin [7], for a graph H and vertices
a, b, c, d in H, the quintuple (H, a, b, c, d) is a J-cell if (i) the
pairs (a, d) and (b, c) are good in H; (ii) none of the pairs (a, b),
(a, c), (b, d), (c, d), ((a, b), (c, d)), and ((a, c), (b, d)) are good in
H; and (iii) for every vertex v in H there exists a good pair
in H − v among (a, b), (a, c), (b, d), (c, d), ((a, b), (c, d)), and
((a, c), (b, d)).

2. Structure and examples

Lemma 1. Let G be a k-graph containing a 2-cut X = {x, y}.
Then the following hold.

(i) The vertices x and y are exceptional. In particular, every
neighbour of a vertex of degree 2 is exceptional, and k ≥
2.

(ii) If X ∈ X2(G) is non-trivial, then F ∈ FX is good if and
only if F is exceptional. Thus, exactly one component of
G − X is non-exceptional.

(iii) Let X ∈ X2(G) and FX = {F, F′}. If F is non-trivial and
non-exceptional, then G′ := G ∪ E is a k-graph for every
E ⊂ {vw : v,w ∈ V(F′)}.

(iv) A 2-connected graph H containing a 2-cut {x, y} is a k-
graph if and only if H′ := (V(H), E(H) ∪ {xy}) is a k-
graph.

Proof. (i) Obvious.
(ii) As X ∈ X2(G), we have FX = {F, F′}. Let F contain a

hamiltonian xy-path and assume there exists a non-exceptional
vertex v in F. Since v is non-exceptional and X is non-trivial,

there exists a hamiltonian xy-path in F′. But if F and F′ have
hamiltonian xy-paths, then G is hamiltonian, a contradiction.
Now let every vertex in F be exceptional. As G has circumfer-
ence |V(G)| − 1, there exists a vertex v in F′ such that there is
a hamiltonian cycle h in G − v. Therefore, as X is non-trivial,
F ∩ h is a hamiltonian xy-path in F. Thus, the advertised equiv-
alence is proven. For the final statement, observe that at least
one component must be non-exceptional, but that not both frag-
ments can be good.

(iii) By (ii) there exists no hamiltonian xy-path in F, and F′

is exceptional, so F′ is good. This means that F′ contains a
hamiltonian xy-path, so no exceptional vertex of F was ren-
dered non-exceptional by the addition of E to G. F remains
unchanged (excluding the possible but inconsequential addition
of the edge xy), so every vertex in F′ remains exceptional af-
ter adding E to G. It is obvious that by adding edges no non-
exceptional vertex can become exceptional. We can see F as a
2-fragment with attachments X in G′, and since F is not good
(because F′ is good), G′ is non-hamiltonian. Together with the
preceding argument, G′ is indeed a k-graph.

(iv) The arguments are similar to (iii), so we will be con-
cise. Since {x, y} = X is a cut in H it is clear that H is non-
hamiltonian if and only if H′ is non-hamiltonian, that no non-
exceptional vertex has become exceptional through the addition
of the edge xy, and that no exceptional vertex becomes non-
exceptional by removing the edge xy. So assume that H′ con-
tains a vertex v such that H′ − v is hamiltonian, but H − v is not.
Clearly, v < X. Since every hamiltonian cycle of H′− v uses the
edge xy, the cut X must be trivial and a component of H′ − X is
{v}. But then any hamiltonian xy-path of H′−v together with the
path xvy yields a hamiltonian cycle of H, a contradiction. The
reasoning that an exceptional vertex of H remains exceptional
in H′ is very similar. �

Fig. 1: K2,3 and K2 + 3K1, respectively.
The latter is the only known 2-graph without a cubic vertex.

Theorem 1. A graph G of connectivity 2 and order n is a k-
graph if and only if either

(1) G contains exactly one 2-cut X = {x, y} whose removal splits
G into exactly three components, all other 2-cuts split G into
exactly two components, and either

(i) G ∈ {K2,3,K2 + 3K1}, in which case k = 2,
(ii) FX consists of two trivial 2-fragments and one non-trivial

good 2-fragment with attachments X, in which case k =

n − 2 and the two non-exceptional vertices are the non-
attachments of the two trivial 2-fragments and are non-
adjacent, or
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(iii) FX consists of a trivial and two non-trivial good 2-
fragments with attachments X, in which case k = n − 1
and the non-exceptional vertex is the non-attachment of
the trivial 2-fragment; or

(2) every 2-cut splits G into exactly two components, and either

(i) there exists a 2-cut X in G such thatFX consists of a trivial
2-fragment containing a non-exceptional vertex and a 2-
fragment that is not good, in which case 2 ≤ k ≤ n − 1,
or

(ii) for every 2-cut in G whose removal yields a trivial com-
ponent, this component consists of an exceptional vertex
and

nexc(G) ⊂
⋂

X∈X2(G)

{C ∈ C(G − X) : C ∩ nexc(G) , ∅} =: I,

in which case k ≥ n − |I| ≥ 3.

Proof. We first show that for a graph G of connectivity 2 to be a
k-graph, it must either (1) contain a 2-cut X such that c(G−X) =

3, in which case K1 ∈ C(G − X) and all other 2-cuts split G into
exactly two components, or (2) we have c(G − Y) = 2 for all
2-cuts Y in G.

Let now G be a k-graph of order n and connectivity 2 and
X = {x, y} a 2-cut in G. Whether or not x and y are adja-
cent makes no difference in the forthcoming arguments (see
Lemma 1 (iv)), so this will be ignored in the remainder of this
proof. Assume either c(G − X) ≥ 4 or c(G − X) = 3 and ev-
ery component of G − X has at least two vertices. As G is a
k-graph, by definition G contains at least one vertex v such that
G − v =: G′ is hamiltonian; note that v < X. We then have that
c(G′ − X) ≥ 3, but this is impossible, as in every hamiltonian
graph, for any cut Y therein, the number of components after the
removal of Y is at most |Y |. So if c(G − X) = 3 then certainly
there exists at least one trivial component of G−X consisting of
a non-exceptional vertex. We distinguish between three cases.
Case 1. If all three components in C(G − X) are trivial, then
G ∈ {K2,3,K2 + 3K1} (see Fig. 1) and k ≥ 2 by Lemma 1 (i). By
symmetry k = 2.

For Cases 2 and 3 we observe that, arguing as above, every
non-trivial 2-fragment with attachments X contains only excep-
tional vertices.
Case 2. If there are exactly two trivial components in C(G−X),
then each of these consists of a non-exceptional vertex. These
vertices are non-adjacent, since they belong to different compo-
nents of G−X. As mentioned above, the non-trivial 2-fragment
F with attachments X must be exceptional, so k = n − 2. Note
that on F no traversability condition is imposed except that it
must contain a hamiltonian xy-path.
Case 3. If exactly one component of G − X is trivial, then this
component consists of the only non-exceptional vertex of G and
k = n − 1. As in Case 2, the only condition imposed on the two
non-trivial 2-fragments with attachments X is that each of them
must contain a hamiltonian xy-path.

It remains to show that, if c(G − X) = 3, then X is the
only 2-cut with this property. Suppose there exists a 2-cut

X′ = {x′, y′} , X with c(G − X′) = 3. Let u be a non-
exceptional vertex of G. In G − u, which is hamiltonian, no
2-cut whose removal splits the graph into more than two com-
ponents may be present, so u must constitute a non-exceptional
trivial component of both G − X and G − X′. Necessarily,
ux, uy, ux′, uy′ ∈ E(G), of which at least three are pairwise dis-
tinct as X , X′; but this contradicts the fact that the degree of u
is 2.

Finally, we deal with the case when for all 2-cuts Y in G we
have c(G − Y) = 2. For G to be a k-graph, its order must be at
least 5 (recall that k-graphs are 2-connected), so the removal of
a 2-cut yields at most one trivial component. If there exists a
2-cut X in G whose removal yields a (unique) trivial component
consisting of a non-exceptional vertex and F ∈ FX is the non-
trivial 2-fragment with attachments X, then the only traversabil-
ity requirements imposed on F are that there is no hamiltonian
xy-path in F, and that F itself is hamiltonian. Consequently, k
may take any value between 2 and n−1. If for every trivial 2-cut
X in G the trivial component of G−X consists of an exceptional
vertex, then by applying Lemma 1 (ii), we are done. �

Theorem 2. Let k ∈ {2, 3} and consider a k-graph G of connec-
tivity 2. Then G contains a trivial 2-cut X = {x, y}. For k = 2,
G contains no 2-cut other than X, and FX consists of a triv-
ial X-fragment and a hamiltonian locally xy-hypohamiltonian
fragment.

Furthermore, among graphs of connectivity 2, there exist(s)

(i) for every k ≥ 2 infinitely many k-graphs with neither cubic
nor quartic vertices;

(ii) for k = 2 and every k ≥ 4 a planar k-graph with no cubic
vertices;

(iii) for every k ≥ 4 infinitely many planar k-graphs of mini-
mum degree 3 but no such graph for k ≤ 3;

(iv) for every k and δ with k > δ ≥ 4 infinitely many k-graphs
of minimum degree at least min{δ, k − δ + 4} but no such
graph for k ≤ δ; and

(v) for every k ≥ 16 a planar k-graph of minimum degree 4
but no such graph for k ≤ 5.

Proof. Let X = {x, y} be a 2-cut of G. If X is non-trivial, by
Theorem 1 we have X ∈ X2(G), but then Lemmas 1 (i) and
(ii) would imply k ≥ 4, a contradiction. So FX consists of one
trivial X-fragment and another X-fragment F. If k = 2, then
by Lemma 1 (i) the only exceptional vertices of G are x and
y, and all other vertices are non-exceptional, in particular the
non-attachment of the trivial fragment with attachments X, so
F must be hamiltonian and locally xy-hypohamiltonian. This
also implies that 2-cuts other than X cannot occur.

(i) For k = 2, consider a hypotraceable graph T ′ and let
T := T ′ + ({x, y}, ∅), where a graph G is hypotraceable if G
itself is non-traceable (i.e. contains no spanning path) but ev-
ery vertex-deleted subgraph of G is traceable. T is locally xy-
hypohamiltonian: suppose there exists a hamiltonian xy-path p
in T . Then p− x− y is a hamiltonian path in T ′, a contradiction.
For any vertex v in T ′ there exists a hamiltonian path p′ in T ′−v,
say with endpoints u and w. Then p′ together with the edges ux
and wy is a hamiltonian xy-path in T − v. Adding to this path
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the edges vx and vy proves that T is hamiltonian. Consider a
path P on three vertices disjoint from T and identify x and y
with the endpoints of P. The resulting graph is a 2-graph of
connectivity 2 containing neither cubic nor quartic vertices as
hypotraceable graphs have minimum degree at least 3 and order
at least 5. There are infinitely many hypotraceable graphs [10],
so the statement is shown. For k = 3 the same approach is used,
but instead of hypotraceable graphs we use almost hypotrace-
able graphs—these are non-traceable graphs containing exactly
one vertex w such that the removal of w yields a non-traceable
graph, but removing any vertex other than w gives a traceable
graph—, more specifically the infinitely many cubic ones de-
scribed in [20]. We have shown the statement for k ∈ {2, 3} and
now present a more general approach based on the same idea,
and similar to arguments used in [3].

We shall make use of so-called J-cells, as defined in the in-
troduction, which occur naturally as hypohamiltonian graphs
(of which there are infinitely many) minus a K2. Let Ji =

(Hi, ai, bi, ci, di) be pairwise disjoint J-cells for i ∈ {1, . . . , k}
and put Gk := k⋃

i=1

V(Ji),
k⋃

i=1

E(Ji) ∪
k−1⋃
i=1

biai+1 ∪

k−1⋃
i=1

cidi+1 ∪ bka1 ∪ ckd1

.
As pointed out in [17], the graph Gk is 3-connected for all k ≥ 4.
We denote by µ(G) the minimum number of pairwise disjoint
paths (which may consist of one vertex) that cover V(G). A
(possibly disconnected) graph G is k-path-critical if for any v ∈
V(G) we have µ(G−v)+1 = µ(G) = k. Note that 2-path-critical
means hypotraceable. Wiener [16] showed that for every k ≥
0, the graph G4k+5 is (k + 2)-path-critical. For k′ ≥ 2 denote
the join of k′K1 (i.e. k′ disjoint copies of K1) and a k′-path-
critical graph T ′ by G, where x and y shall be vertices among
the K1’s. Add to G a new vertex z and the edges xz and yz.
Arguing as above, the resulting graph G′ then contains neither
cubic nor quartic vertices (in fact, excluding z, the graph G′

has minimum degree at least k′ + 3), every vertex added as a
K1 is exceptional, and every other vertex (including z) is non-
exceptional. Assume G′ contains a hamiltonian cycle h. As
h visits all k′ copies of K1 and must use the path xzy, h ∩ T ′

consists of k′ − 1 pairwise disjoint paths which together span
T ′. But µ(T ′) = k′, a contradiction. Thus, G′ is a k′-graph.

(ii) For k = 2, consider K2 + 3K1. For k ≥ 4, consider the
wheel graph with k spokes, i.e. Ck + K1. For every pair of adja-
cent vertices v,w, neither of which is the wheel’s central vertex,
add a path of length 2 with endpoints v and w. We obtain a pla-
nar k-graph of connectivity 2 with no cubic vertices. For k ≥ 5,
these graphs also do not contain quartic vertices. For k = 2,
the graph is shown in Fig. 1, while for k ∈ {4, 5} the graphs are
depicted in Fig. 2.

(iii) Consider a plane hypohamiltonian graph (of which we
know that there are infinitely many [10]) and a cubic vertex
therein—such a vertex always exists by (T1). Removing this
cubic vertex we obtain a plane non-trivial 3-fragment with at-
tachments {u, v,w}, all of which lie on the boundary of the same
face. We add the vertices x, y and edges ux, xv, vy, yw in order
to obtain a plane locally xy-hypohamiltonian graph F with the

Fig. 2: A planar 4-graph without cubic vertices (left-hand side)
and a planar 5-graph with neither cubic nor quartic vertices

(right-hand side), each of connectivity 2.

property that x, y lie on the boundary of the same face. Let H
be a wheel graph on k ≥ 4 vertices, and x′, y′ adjacent vertices
in H different from its central vertex. Identify x with x′ and y
with y′. We obtain a planar graph G of minimum degree 3. Due
to the properties of locally xy-hypohamiltonian graphs, every
vertex of F − x − y is non-exceptional in G, the graph G is non-
hamiltonian, and each of the k vertices of H is exceptional in G.
We have shown that for every k ≥ 4 there exists a planar k-graph
of minimum degree 3. This result complements the statement
that for k ∈ {2, 3} a k-graph of connectivity 2 must contain a
2-valent vertex.

For the second part of the statement, let G be a planar k-graph
of connectivity 2 and minimum degree 3. Thus, no 2-cut of G
is trivial. By Theorem 1, for every 2-cut X of G the removal of
X from G yields exactly two (non-trivial) components. Hence,
by Lemma 1 (ii), for every 2-cut X of G there is a non-trivial
component C of G − X containing exclusively exceptional ver-
tices. As G has minimum degree 3, we have |V(C)| ≥ 2, which
combined with Lemma 1 (i) gives the bound.

(iv) Consider the graph G as constructed in the proof of (i),
i.e. the join of k′K1 and a k′-path-critical graph. Take a copy K
of Kδ+1 and distinct vertices v,w in K. Identify v with x and w
with y, where x and y are vertices of G as defined in the proof
of (i). We obtain a graph G′. This graph is a (k′+δ−1)-graph, as
all k′ vertices constituting the k′ copies of K1 (occurring when
constructing G in the proof of (i)) are exceptional, every vertex
of K is exceptional, all other vertices in G′ are non-exceptional,
and G′ is non-hamiltonian (this can be seen using the same ar-
guments as provided at the end of the proof of (i)). By construc-
tion, the minimum degree of G′ is at least min{δ, k′ + 3}. Ar-
guing as at the end of the proof of (iii) yields the non-existence
statement given in (iv).

(v) See Fig. 3. An infinite family is obtained by replacing
the 6-vertex 2-fragment with attachments x, y by appropriate
(and easily determined) 2-fragments of larger order containing
a hamiltonian xy-path. That indeed k ≥ 6 can be shown as
above, noting that here we have |V(C)| ≥ 4—as before, C is a
component of G − X and X is an arbitrary 2-cut of G—as the
minimum degree of G is 4 and G is planar. �

The constructions from Theorem 2 (ii) and (v) have a dra-
matic defect: for given k they only provide one example of a
planar k-graph with certain desired properties. From these per-
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x y

Fig. 3: A planar 16-graph of minimum degree 4 and
connectivity 2.

haps several other such examples can be deduced with similar
arguments, but infinite families of planar k-graphs for fixed k
and of connectivity 2 seem out of reach with this strategy. We
now change our approach and address this issue, but pay a price
as our bounds are worse than the ones presented in Theorem 2.

3. Infinite families of planar k-graphs for fixed k

Thomassen [12] used the following operation to prove
that there exist infinitely many planar cubic hypohamiltonian
graphs. Let G be a graph containing a 4-cycle C = v1v2v3v4, and
consider vertices v′1, v

′
2, v
′
3, v
′
4 < V(G). We denote by Th(GC)

the graph obtained from G by deleting the edges v1v2, v3v4
and adding a new 4-cycle C′ = v′1v′2v′3v′4 and the edges viv′i ,
1 ≤ i ≤ 4. If we write “the graph Th(GC)” without specifying
how C is labeled, then we refer to (an arbitrary but fixed) one of
the two (possibly isomorphic) graphs obtained when applying
Th. The following result is essentially due to Thomassen, who
gives it (without proof) in [12]. A detailed proof for the planar
case can be found in [19].

Proposition 1 (Thomassen [12]). Let G be a hypohamiltonian
graph containing a 4-cycle C whose vertices are cubic. Then
Th(GC) is hypohamiltonian, as well.

Variations, generalisations, and applications of this proposi-
tion abound, see for instance [3], [22], and [23]. We here give
yet another version, tailored to our needs. In the statement of
Lemma 2, C′ is as introduced in this section’s first paragraph.

Lemma 2. Let G be a polyhedral k-graph containing a facial
4-cycle C = v1v2v3v4 such that (i) C contains two cubic vertices
and (ii) C contains two adjacent non-exceptional vertices. Then
T := Th(GC)+v1v2+v3v4 is a polyhedral k-graph in which every
vertex of C has degree at least 4, every vertex that was non-
exceptional (exceptional) in G is non-exceptional (exceptional)
in T , and every vertex of C′ is cubic and non-exceptional.

Proof. It was shown in the proof of [22, Lemma 5] that if G
is non-hamiltonian, then so is T . (In that proof the vertices of
C were assumed to be cubic, but exactly the same proof can be
used without this restriction.) It is obvious that every vertex of
C has degree at least 4 and every vertex of C′ is cubic. We shall
use the latter fact tacitly.

We consider G to be a subgraph of T . Let v be a non-
exceptional vertex in G, and let hv be a hamiltonian cycle in
G − v. By (i), hv contains an edge e ∈ E(C). Replacing in
hv the edge e by the appropriate path (e.g. replacing e = v1v2
by v1v′1v′4v′3v′2v2) visiting every vertex of C′ proves that v is
non-exceptional in T , as well. Assume there exists a non-
exceptional vertex w in T − C′ with the property that w was
exceptional in G. Let hw be a hamiltonian cycle in T − w. Then
hw∩C′ has one or two components. Either way, it is straightfor-
ward to replace these with edges residing in E(C), thus obtain-
ing a hamiltonian cycle in G − w, a contradiction, since w was
assumed to be exceptional in G. In conclusion, every vertex
that was non-exceptional (exceptional) in G is non-exceptional
(exceptional) in T .

By (ii) we know that C contains adjacent non-exceptional
vertices, and without loss of generality we may assume that v1
and v2 are these two vertices. Suppose there exists a hamilto-
nian cycle in G− v1 using the edge v3v4 (if no such cycle exists,
it must use the edge v2v3 by (i), and the ensuing arguments are
very similar). Replace v3v4 by v3v′3v′2v′1v1v4 and a hamiltonian
cycle in T − v′4 is obtained. Replacing in this cycle v′3v′2v′1 by
v′3v′4v′1 yields a hamiltonian cycle in T −v′2. The same reasoning
allows us to infer from the hamiltonicity of G − v2 that v′1 and
v′3 are non-exceptional in T . �

We remark that although many polyhedral k-graphs satis-
fying condition (i) of Lemma 2 have been described (take
for instance Herschel’s graph, or graphs presented by Dillen-
court in [2]), it is condition (ii)—in particular, the adjacency
requirement—which is more difficult to satisfy.

We need the following lemma, the proof of which is straight-
forward and therefore omitted.

Lemma 3. Let G be a k-graph containing a cubic vertex v
which shall not be the only non-exceptional vertex in G. Re-
placing v by an octahedron O as shown in Fig. 4, we obtain an
`-graph G′ with ` = k + 5 if v is exceptional and ` = k + 6 if it is
not. Moreover, every vertex of G′−O that was exceptional / non-
exceptional in G remains so in G′, and all six vertices in O are
exceptional and of degree at least 4.

Fig. 4: Replacing a cubic vertex by an octahedron.
(Vertices in this figure may be exceptional or non-exceptional.)

Henceforth, when we replace a vertex by an octahedron this
means that we perform the operation depicted in Fig. 4. For a
subgraph H ⊂ G, we denote with V3(H) the set of all cubic ver-
tices in H. Using Lemmas 2 and 3, we can show the following
result.
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Theorem 3. Let G be a polyhedral k-graph containing a facial
4-cycle C such that there exist two cubic vertices as well as two
adjacent non-exceptional vertices in C. Then there exist for

` := 6(|V3(G)| − |V3(C)| + 4) + |exc(G) ∩ (V(G) \ V3(G))|

infinitely many polyhedral `-graphs of minimum degree 4; in-
finitely many planar (`+ 1)-graphs of connectivity 2 containing
no cubic vertex; and infinitely many planar (` + 4)-graphs of
connectivity 2 and minimum degree 4.

Proof. For the first statement, apply Lemma 2 to G and C
in order to obtain a graph G′. By Lemma 2, G′ is a polyhe-
dral k-graph in which every vertex of C has degree at least 4,
every vertex that was non-exceptional (exceptional) in G is
non-exceptional (exceptional) in G′, and every vertex of C′ =

G′[V(G′) \ V(G)] (we see G as a subgraph of G′) is cubic
and non-exceptional. Apply Lemma 3 to every cubic vertex
in G′ in order to obtain a graph G′′. Clearly, G′′ is a polyhe-
dral graph and every vertex of G′′ has degree at least 4. By
Lemmas 2 and 3, every cubic vertex originally belonging to G
and C′ (exceptional or not) has been replaced by an octahe-
dron of six exceptional non-cubic vertices in G′′, while every
exceptional (non-exceptional) non-cubic vertex originally be-
longing to G remains unchanged and is an exceptional (non-
exceptional) non-cubic vertex in G′′. That G′′ indeed has mini-
mum degree exactly 4, and not at least 4, follows from the fact
that in G, the cycle C contained a cubic vertex, which after ap-
plying Lemma 2 to G becomes a quartic vertex, which is then
not altered when applying Lemma 3 (as it applies only to cubic
vertices).

In order to obtain an infinite family G, note that Lemma 2
can be applied any number of times to G′ (always producing a
graph with the same number of exceptional vertices), giving a
graph in which then Lemma 3 is applied to every cubic vertex.

For the statements concerning the connectivity 2 case, ob-
serve that there exists an edge e in G′′ (and analogously in ev-
ery member of G) such that for every non-exceptional vertex v
in G′′ there is a hamiltonian cycle in G′′−v containing e: let e be
the edge in a transformed cubic vertex (via Lemma 3) as shown
in Fig. 5. (There always is such a vertex because every vertex
of C′ is cubic.) Fig. 5 shows all essentially different traversals.
Now add a new, 2-valent vertex on e for the second statement of
Theorem 3 (this new vertex will itself be exceptional, as its re-
moval yields G′′−e, a non-hamiltonian graph), and for the final
statement of Theorem 3 remove the edge e = vw, and consider
an octahedron (disjoint from G′′ − e), two distinct vertices of
which are identified with v and w such that the resulting graph
is planar. Noting that every vertex of the newly added octahe-
dron is exceptional, the proof is complete. �

Consider the plane 3-connected 1-graph G constructed by
Wiener [18] and reproduced in Fig. 6, where the required
quadrilateral C (in order to apply Theorem 3) may be any of
the quadrilaterals present in G. The exceptional vertex of G is
marked white in Fig. 6.

We have |V3(G)| = 24, |V3(C)| = 2, and |exc(G) ∩ (V(G) \
V3(G))| = 1. Therefore, by Theorem 3, there exist infinitely

x x

e e

y yz z

Fig. 5: Longest cycles using the edge e.
(Vertices in this figure may be exceptional or non-exceptional.)

w1

w2

w3
w4 w5

w6

w7

w8

Fig. 6: Wiener’s polyhedral 1-graph.

many polyhedral 157-graphs of minimum degree 4, infinitely
many planar 158-graphs of connectivity 2 containing no cubic
vertex, and infinitely many planar 161-graphs of connectivity 2
and minimum degree 4. We now improve these results.

Lemma 4.

(i) Let G be a k-graph in which adjacent cubic vertices were
replaced by octahedra O1,O2, respectively. Let vi ∈ V(Oi)
be adjacent. Then G/v1v2 is a (k − 1)-graph.

(ii) Let H be an `-graph in which adjacent cubic vertices
v1, v2 and their cubic and pairwise distinct neighbours
v3, v4, v5, v6 were replaced by octahedra Oi, respectively,
and (i) was applied. Removing all six inner vertices of O1
and O2 yields an (` − 6)-graph.

Proof. (i) Assume G′ := G/v1v2 is hamiltonian. This yields a
hamiltonian cycle in G, G − v1 or G − v2, all of which lead to a
contradiction as G is a k-graph in which the vertices v1 and v2
are exceptional (as every vertex in V(O1)∪V(O2) is exceptional
by Lemma 3). So G′ is non-hamiltonian.

Let v be a non-exceptional vertex in G and hv a hamiltonian
cycle in G − v. Note that v < V(O1) ∪ V(O2). If v1v2 lies on hv,
then after contracting v1v2 we have obtained a hamiltonian cy-
cle in G′ − v. If it does not, we reroute hv in O1 so that it avoids
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v1 and only v1 (among vertices in O1), and becomes a hamilto-
nian cycle in G − v − v1. Contracting v1v2 yields a hamiltonian
cycle in G′ − v. Thus, every vertex that is non-exceptional in G
is also non-exceptional in G′.

Let u be the vertex in G′ obtained when identifying v1 and
v2. Let w be an exceptional vertex in G which is neither v1 nor
v2, and assume that G′ − w contains a hamiltonian cycle hw. If
one neighbour of u on hw lies in O1 − u and the other lies in
O2 − u, we expand u back into v1v2 and obtain a hamiltonian
cycle in G − w, a contradiction. So both neighbours of u on hw
lie (without loss of generality) in O1−u. Expanding u back into
v1v2, the cycle hw becomes a hamiltonian cycle h in G −w− v2.
It is now easy to reroute h in O2 so that it visits v2 as well, and
we have obtained a hamiltonian cycle in G − w, once more a
contradiction. Hence, excluding v1 and v2, every vertex that is
exceptional in G is also exceptional in G′.

Assume u is non-exceptional in G′, so there exists a hamilto-
nian cycle in G′ − u. Expanding u back into v1v2, we obtain a
hamiltonian cycle h′ in G−v1−v2. As before, we can reroute h′

inside O1 and O2 such that a hamiltonian cycle in G is obtained,
a contradiction.

(ii) The arguments are similar and therefore omitted. �

Consider once more Wiener’s graph G from Fig. 6. We will
be interested in the 20-vertex subgraph S emphasised by bold
edges in Fig. 6. Replace every cubic vertex of G except for the
two cubic vertices located on the boundary of the outer quadri-
lateral (see Fig. 6), which we call C, by an octahedron. Since
there are |V(S )| + 2 = 22 such vertices, we obtain a polyhe-
dral k-graph containing exactly two cubic vertices, and with
k = 22 · 6 + 1 = 133. Thereafter, contract all 24 edges of
S , each of which now lies between two octahedra and satis-
fies the requirement stated in Lemma 4 (i). When perform-
ing this contraction, we also apply Lemma 4 (ii) to the vertex
pairs (w1,w2), (w3,w4), (w5,w6), (w7,w8) as defined in Fig. 6.
Hence, we are contracting 24 edges (and thus removing 24
exceptional vertices) as well as removing from eight octahe-
dra their three interior vertices (via Lemma 4 (ii)), which re-
moves another 24 exceptional vertices. So we obtain a graph
G′ with 133−24−24 = 85 exceptional vertices. Thus, we have
|V3(G′)| = |V3(C)| = 2 and |exc(G′) ∩ (V(G′) \ V3(G′))| = 85.
Applying to G′ and C Theorem 3, we obtain infinite families
of polyhedral `-graphs of minimum degree 4; (` + 1)-graphs of
connectivity 2 containing no cubic vertex; and planar (` + 4)-
graphs of connectivity 2 and minimum degree 4, where

` = 6(|V3(G′)| − |V3(C)| + 4) + |exc(G′) ∩ (V(G′) \ V3(G′))|
= 6(2 − 2 + 4) + 85 = 109.

We now summarise our findings.

Theorem 4. There exist infinitely many polyhedral 109-graphs
of minimum degree 4, infinitely many planar 110-graphs of con-
nectivity 2 containing no cubic vertex, and infinitely many pla-
nar 113-graphs of connectivity 2 and minimum degree 4.

It was proven in [23] that in a polyhedral n-vertex k-graph
of minimum degree at least 4 we have k ≤ n − 6, and that for

every c < 1 there exists a polyhedral non-hamiltonian n-vertex
graph of minimum degree 4 with at least cn hamiltonian vertex-
deleted subgraphs.

For a non-negative integer t, put k(t) = 6(24 + 4t) + 1. Apply-
ing the operation Th, defined in the beginning of this section, t
times to Wiener’s graph shown in Fig. 6, where C shall be the
outer quadrilateral, we obtain by Theorem 3 an infinite family
G of k(t)-graphs, each containing at least 24 edges (already con-
tained in Wiener’s graph, which is a subgraph of every graph in
G, and emphasised in Fig. 6) which can be contracted as de-
scribed in Lemma 4 (i). Since k(t + 1) − k(t) = 24, using Theo-
rem 3, contracting edges one-by-one, and slightly adapting the
final part of the proof of Theorem 3, yields:

Theorem 5. There exists a k0 such that for every k ≥ k0 there
are infinitely many polyhedral k-graphs of minimum degree 4,
for every k′ ≥ k0 + 1 infinitely many planar k′-graphs of con-
nectivity 2 containing no cubic vertex, and for every k′′ ≥ k0 +4
infinitely many planar k′′-graphs of connectivity 2 and mini-
mum degree 4.

We have already discussed the general (i.e. not necessarily
planar) case in Theorem 2 (i) and (iv). We could now comple-
ment these results and give an alternative approach by adapting
Theorem 3, applying Lemma 2 as stated above, and modifying
Lemma 3 by using K5 instead of the octahedron. However, even
after applying a suitable variation of Lemma 4, this would pro-
duce worse bounds than what we have seen in Theorem 2 and
is therefore omitted.

4. On a theorem of Thomassen

In the light of Thomassen’s result (T2) that a planar n-vertex
graph with no cubic vertices in which n vertex-deleted sub-
graphs are hamiltonian, must itself be hamiltonian, and our
strengthening stating that the latter “n” can be replaced with
“n − 1” [22], we ask the natural question whether this can be
further lowered to n − 2 (if we exclude K2 + 3K1) or n − 3; in
other words, whether a planar k-graph without cubic vertices,
other than K2 + 3K1, exists for k ∈ {2, 3}. We shall call such a
graph naughty.

In [23] we proved that naughty graphs of minimum degree at
least 4 do not exist, so a naughty graph must contain a 2-valent
vertex. We remark that there are no small naughty graphs other
than K2 + 3K1: Van Cleemput [14] verified, using a computer,
that up to order 10 the only planar k-graphs with k ≤ 2, irrespec-
tive of connectivity or degree conditions, are K2,3 and K2 +3K1.
Even dropping the planarity requirement only adds the obvious
candidate, Petersen’s graph, which is hypohamiltonian, i.e. a
0-graph. His computations also show that planar 3-graphs of
order at most 10 exist only for order 7, and that all of them
contain a cubic vertex (these graphs are structurally similar to
the ones constructed in the proof of Theorem 2 (ii)). We con-
clude this article with the following result on the non-existence
of certain planar 3-graphs, complementing (T2).
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Theorem 6. Let G be a planar graph of order at least 4 and
without cubic vertices, in which there exist exactly three ver-
tices, each of whose deletion yields a non-hamiltonian graph,
one of which is 2-valent. Then G is hamiltonian.

Proof. The conditions imposed on G imply that G must be 2-
connected. Assume that G is non-hamiltonian, i.e. a 3-graph.
Denote the exceptional vertices of G with X = {x, y, z} and let
z have degree 2. The neighbours of z must be exceptional, so
they are x and y, and these together form the only 2-cut of G
(otherwise G would not be a 3-graph as every vertex of a 2-cut
is exceptional). Thus, the only 2-valent vertex of G is z. Put
X = {x, y}. By Theorem 1, G − X has exactly two components,
one of which is {z}.

We first treat the case that xy is not an edge of G. As z is ex-
ceptional and G is non-hamiltonian, G′ := (V(G) \ {z}, E(G) ∪
{xy}) is a planar k-graph of minimum degree at least 4 and
k ∈ {0, 1, 2}, as x and y may have become non-exceptional in G′,
but for every vertex v that was non-exceptional in G there exists
a hamiltonian xy-path in G′ − v and thus a hamiltonian cycle in
G′ − v. By the result from [23] that if in a planar n-vertex graph
with minimum degree at least 4 at least n − 5 vertex-deleted
subgraphs are hamiltonian, then the graph is hamiltonian, we
have that G′ must be hamiltonian. As G is non-hamiltonian,
G − z contains no hamiltonian xy-path, so no hamiltonian cy-
cle of G′ uses the edge xy. Thus, z is non-exceptional in G, a
contradiction.

Let us now assume that x and y are adjacent in G. The graph
G′′ := G − z is non-hamiltonian because z is exceptional in G.
For every vertex v that was non-exceptional in G there exists a
hamiltonian xy-path in G′′ − v. Therefore, the vertices x and y
cannot have a common neighbour u in G′′, as we could extend
the hamiltonian xy-path in G′′ − u to a hamiltonian cycle (by
adding the path xuy) in G′′, a contradiction. Let G′′′ := G′′/xy,
i.e. the graph obtained after contracting the edge xy in G′′. The
non-hamiltonicity of G, exceptionality of x in G, and exception-
ality of y in G together yield that G′′′ is non-hamiltonian.

Denoting the vertex obtained through the contraction of the
edge xy by w, we have that w may be exceptional or non-
exceptional in G′′′, but certainly its degree is at least 4 by above
arguments. Therefore G′′′ is planar, has minimum degree at
least 4, and is either hypohamiltonian or almost hypohamilto-
nian, contradicting the aforementioned result from [23]. �
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