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Abstract. Motivated by a conjecture of Grünbaum and a problem of Ka-
tona, Kostochka, Pach, and Stechkin, both dealing with non-hamiltonian
n-vertex graphs and their (n − 2)-cycles, we investigate K2-hamiltonian
graphs, i.e. graphs in which the removal of any pair of adjacent vertices
yields a hamiltonian graph. In this first part, we prove structural prop-
erties, and show that there exist infinitely many cubic non-hamiltonian
K2-hamiltonian graphs, both of the 3-edge-colourable and the non-3-edge-
colourable variety. In fact, cubic K2-hamiltonian graphs with chromatic
index 4 (such as Petersen’s graph) are a subset of the critical snarks. On
the other hand, it is proven that non-hamiltonian K2-hamiltonian graphs of
any maximum degree exist. Several operations conserving K2-hamiltonicity
are described, one of which leads to the result that there exists an infinite
family of non-hamiltonian K2-hamiltonian graphs in which, asymptotically,
a quarter of vertices has the property that removing such a vertex yields a
non-hamiltonian graph. We extend a celebrated result of Tutte by showing
that every planar K2-hamiltonian graph with minimum degree at least 4 is
hamiltonian. Finally, we investigate K2-traceable graphs, and discuss open
problems.
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1 Introduction

Grünbaum [18] defined Γ(j, k) with k ≥ j as the family of all graphs whose order and
circumference differ by k and in which any j vertices are missed by some longest cycle.
Γ(1, 1) are exactly the hypohamiltonian graphs, i.e. non-hamiltonian graphs in which every
vertex-deleted subgraph is hamiltonian. These have been studied extensively, see [20] for
a survey and [24, 40, 42] for recent contributions.
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In 1974, Grünbaum [18] conjectured that Γ(j, j) is empty for all j ≥ 2. Very little is
known about the veracity of this conjecture, which in its general form seems disconcertingly
difficult. In this article, we focus on a class of graphs related to Γ(2, 2). Thomassen agrees
with Grünbaum that Γ(2, 2) is empty, and points out that every member of Γ(2, 2) has
the property that each of its vertex-deleted subgraphs must be hypohamiltonian [35].
A relaxation of the question whether Γ(2, 2) is empty was raised in 1989 by Katona,
Kostochka, Pach, and Stechkin [25]. They asked whether an n-vertex graph in which any
n − 2 vertices induce a hamiltonian graph, must itself be hamiltonian. An equivalent
problem was raised by van Aardt, Burger, Frick, Llano, and Zuazua, see [1, Question 1].
The only difference between these graphs and Grünbaum’s Γ(2, 2) is the fact that, if n is
a graph’s order, the former allow (n− 1)-cycles, while the latter do not.

Reformulating the Katona et al. question, we can ask whether a graph in which the
removal of any pair of vertices yields a hamiltonian graph, must itself be hamiltonian. The
problems of Grünbaum and Katona et al. restricted to pairs of non-adjacent vertices can be
solved by considering the join of Kt and Kt+2. In this paper, we concentrate on the Katona
et al. question restricted to adjacent vertices, which we abbreviate to (K), and Grünbaum’s
conjecture restricted to pairs of adjacent vertices, which we abbreviate to (G). We will call
K2-hamiltonian graphs in which the removal of any pair of adjacent vertices is hamiltonian.
Applications of the hamiltonian properties of K2-deleted subgraphs include Faulkner and
Younger’s use in [12], which inspired the application in [26]; Horton’s use [21]—as well as
Thomassen’s generalisation [34]—to construct hypotraceable graphs (we come back to this
in Section 5); results on the widely used dot product, for instance in the context of snarks;
and Chvátal’s so-called “flip-flops” [7], generalised by Hsu and Lin [22], a generalisation
which in turn was used by Wiener to study a criticality notion for spanning trees [39].

The problems (K) and (G) vary greatly in difficulty: on the one hand, we shall provide
many solutions to (K), but on the other hand, we will only “scratch the surface” concerning
(G), reaching in a certain sense a quarter of a solution. In Section 2 we present properties
and provide examples of non-hamiltonian K2-hamiltonian graphs—these solve (K) and
yield potential counterexamples to (G); in Section 3 we discuss the hamiltonian properties
of vertex-deleted subgraphs of K2-hamiltonian graphs and three operations conserving
K2-hamiltonicity; and in Section 4 we study planar K2-hamiltonian graphs, which we
motivate in the next paragraph. In Section 5 we treat K2-traceable graphs, i.e. graphs in
which the removal of any pair of adjacent vertices yields a graph containing a hamiltonian
path, and in Section 6 the article concludes with open problems and directions for future
research.

In [18], Grünbaum also conjectured that planar hypohamiltonian graphs do not exist.
Restated in a perhaps more attractive fashion: a planar graph in which every vertex-
deleted subgraph is hamiltonian, must itself be hamiltonian. Although Thomassen re-
futed this [34], he also showed an elegant way to save Grünbaum’s conjecture by proving
that a planar graph of minimum degree at least 4 in which every vertex-deleted sub-
graph is hamiltonian, must itself be hamiltonian [35]. Searching for a different manner
in which Grünbaum’s conjecture can be saved, one could ask whether it is true that a
planar K2-hamiltonian graph must be hamiltonian. This question will be addressed in
the continuation of this article [15]. Equivalent to Thomassen’s aforementioned result is
the statement that every planar hypohamiltonian graph contains a cubic vertex. We will
here prove a K2-hamiltonian analogue of this result. It can be inferred from results of
Tutte [37], Thomas and Yu [32], and Sanders [30], that every planar 4-connected graph of
order n contains a cycle of length n, n− 1, n− 2, and n− 3. In Section 4, we will extend
these results and show that every planar K2-hamiltonian of minimum degree at least 4
contains a cycle of length n, n− 1, n− 2, and n− 3.
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In this paper, all graphs are finite, simple, and connected, unless otherwise stated.
Our notation follows Diestel’s book [10], with a few exceptions and additions: here, a
complete n-vertex graphs will be denoted by Kn, and a set of vertices (edges) whose
removal disconnects a given graph is a cut (edge-cut). A k-cut (k-edge-cut) is a cut (an
edge-cut) of cardinality k. The number of components of a possibly disconnected graph
G is denoted by c(G). Let G be a non-complete graph of connectivity k and order greater
than k, X a k-cut in G, and C a component of G−X. Then G[V (C)∪X] is a k-fragment
of G with attachments X—we here use Wiener’s definition [40] which slightly differs from
Thomassen’s [34]—but sometimes we will suppress specifying the attachments, or shorten
this and simply write X-fragment. A k-fragment is trivial if it contains exactly k + 1
vertices. Let F, F ′ be disjoint 3-fragments of graphs of connectivity 3, and let F have
attachments x1, x2, x3 and F ′ have attachments x′1, x

′
2, x
′
3. Identifying xi with x′i for all i,

we obtain the graph (F, {x1, x2, x3})
... (F ′, {x′1, x′2, x′3}). When the vertices that are being

identified (always using a bijection) are clear from context, we simply write F
...F ′. A cut

X of G is trivial if G−X has exactly two components and X is the set of attachments of a
trivial k-fragment. A 3-connected graph in which every 3-cut is trivial is called essentially
4-connected. A path with end-vertex v is a v-path, and a v-path with end-vertex w 6= v is
a vw-path. For t ∈ {1, 3} we say that a graph G is Kt-hamiltonian if the deletion of any
copy of Kt present in G yields a hamiltonian graph.

2 Fundamental properties and examples

Every K2-hamiltonian graph is 3-connected. It is also 1-tough: let G be a K2-hamiltonian
graph and S ⊂ V (G) have cardinality k. Consider v ∈ S. For w ∈ N(v) we denote with h
a hamiltonian cycle in G−v−w. Let u ∈ N(w)\{v}. We remove from h an edge incident
with u and add the path uw in order to obtain a path p. The vertices in S \ {v} are on p
and determine at most k subpaths of p. Each such subpath visits at most one component
of G− S, so G− S has at most k components.

Moreover, if G is K2-hamiltonian and triangle-free, then its girth is at most

3 + min
vw∈E(G)

|V (G)| − 2

deg(v) + deg(w)− 2
,

which we now show. Consider adjacent v, w ∈ V (G), put N := N(v) ∪ N(w) \ {v, w},
and let h be a hamiltonian cycle in G − v − w. The vertices of N split h into paths
S1, . . . , Sk, where k = deg(v) + deg(w) − 2 (since G is triangle-free). For arbitrary but
fixed i ∈ {1, . . . , k}, let Si have end-vertices x, y ∈ N . Then either Si ∪ xvy, Si ∪ xwy,
Si ∪ xvwy, or Si ∪ xwvy is a cycle Qi in G. We have

k∑
i=1

|E(Qi)| ≤ |E(h)|+ 3k = n− 2 + 3k.

Thus, the shortest of these cycles has length at most n−2+3k
k .

We shift our focus to non-hamiltonian K2-hamiltonian graphs, for which we present
a series of basic structural results which will be useful in later arguments. Several of
these are variations of results on hypohamiltonian graphs, e.g. Bondy’s observation that
triangles in hypohamiltonian graphs do not contain cubic vertices (see [7]).
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Proposition 1. Let G be a non-hamiltonian K2-hamiltonian graph of order n. Then the
following hold.

(i) The vertices of a 3-cycle or a 4-cycle in G have degree at least 4. If G contains a
5-cycle with two non-adjacent cubic vertices, then it has circumference n−1. Hence,
cubic K2-hamiltonian graphs of order n and circumference n−2, and thus any cubic
counterexample to (G), must have girth at least 6.

(ii) The vertices of a 3-cut X of G are independent and c(G−X) = 2. If X is non-trivial,
then each vertex in X has at least two neighbours in each component of G −X; in
particular, the vertices in X have degree at least 4 in G. If Y is a 4-cut of G and
E(G[Y ]) 6= ∅, then c(G− Y ) = 2, and the edges in G[Y ] are independent.

(iii) For a non-trivial 3-cut X = {x1, x2, x3} of G, both X-fragments F1 and F2 contain
an xixj-path that is hamiltonian in the fragment minus xk, where i, j, k are pairwise
different. Moreover, for i ∈ {1, 2} and adjacent vertices a, b ∈ V (Fi) \X there exists
a hamiltonian path between two vertices of X in Fi − a− b.

(iv) G is cyclically 4-edge-connected.

(v) If G has circumference n− 2, then it must be essentially 4-connected. In particular,
any counterexample to (G) is essentially 4-connected.

Proof. (i) Let uvw be a 3-cycle in G with v cubic. Removing u and w from G gives a
graph of connectivity 1, which cannot be hamiltonian. Let uvwx be a 4-cycle in G with v
cubic. Removing w and x from G, we obtain a graph containing a hamiltonian cycle using
the edge uv. Replacing this edge with the path uxwv yields a hamiltonian cycle in G, a
contradiction. Let uvwxy be a 5-cycle in G with v and x cubic. Consider the hamiltonian
cycle h in G− u− y. Certainly, h contains the path vwx. Replacing, in G, vwx with the
path vuyx, we obtain a cycle of length n− 1 in G.

(ii) Assume two vertices of a 3-cut X are adjacent. Removing these two vertices we
would obtain a graph of connectivity 1, which cannot be hamiltonian, a contradiction.
Suppose c(G − X) ≥ 3 and let F1, F2, F3 be pairwise different X-fragments of G. For
i ∈ {1, 2, 3} there exists an edge xy ∈ E(G) such that x ∈ X and y ∈ V (Fi) \ X. Since
G− x− y is hamiltonian, c(G−X) = 3 and Fi −X = K1. Thus, as G is 3-connected, we
have G = K3,3, which is hamiltonian. But this yields a contradiction, since G is assumed
to be non-hamiltonian.

Suppose G has a non-trivial 3-cut X = {u, v, w} such that v is cubic. We have seen
that there are exactly two X-fragments F1 and F2. Without loss of generality v has only
one neighbour x in F2. Since X is non-trivial, F1 and F2 contain at least five vertices each.
Removing x and a neighbour of x residing in V (F2)\X, we obtain a hamiltonian uw-path
p in F1 unless F2 has exactly five vertices—if this is the case, it follows from the fact that
G has minimum degree 3 that a 3-cycle with a cubic vertex must occur, contradicting (i).
Removing v and a neighbour of v lying in F1, we obtain a hamiltonian uw-path p′ in
F2 − v. However, this implies that p ∪ p′ is a hamiltonian cycle in G, a contradiction.

Finally, let Y = {u, v, w, x} be a 4-cut of G and assume that uv ∈ E(G[Y ]). Since
G − u − v is hamiltonian and of connectivity 2, we have c(G − Y ) = 2. Suppose G[Y ]
contains incident edges uv and vw. Let F1 and F2 be Y -fragments of G. Since G− u− v
and G− v−w are hamiltonian, F1−u− v contains a hamiltonian wx-path and F2− v−w
contains a hamiltonian ux-path p′. Then p ∪ p′ ∪ uvw is a hamiltonian cycle in G, a
contradiction.

(iii) By (ii) we have c(G−X) = 2. Denote these two fragments by F1 and F2. Their
order is greater than 4, since X is non-trivial. In order to obtain the desired hamiltonian
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path in F1, we use the fact that G is K2-hamiltonian and remove xk (defined in the
statement above) and a vertex from F2 − X adjacent to xk. (Observe that we cannot
guarantee the advertised property if we allow X to be trivial.)

Let a, b ∈ V (F1) \X. Since G− a− b is hamiltonian, there exists a hamiltonian path
p1 between two vertices of X in F1 − a− b or there exists a hamiltonian path p2 between
two vertices of X in F2. It is easy to see that the latter is impossible: by the paragraph
above there is a hamiltonian xixj-path p3 in F1 − xk if {i, j, k} = {1, 2, 3}, and (choosing
p3 appropriately) p2 ∪ p3 would be a hamiltonian cycle of G.

(iv) Assume G contains a 3-edge-cut M = {uu′, vv′, ww′}, such that the components of
G−M , which we call F, F ′, satisfy u, v, w ∈ V (F ) and u′, v′, w′ ∈ V (F ′), and each contain
a cycle. By (i), F and F ′ contain at least four vertices each. Thus, we can remove from F
the vertex v and a neighbour x of v which also lies in F . Since G−v−x is hamiltonian, we
obtain a hamiltonian u′w′-path p′ in F ′. We can similarly obtain a hamiltonian uw-path
p in F . But then p ∪ p′ ∪ uu′ ∪ ww′ is a hamiltonian cycle in G, a contradiction.

(v) Suppose G contains a non-trivial 3-cut X = {u, v, w}. Let F1 and F2 be the two
X-fragments of G. Consider x ∈ (N(u) ∩ V (F1)) \ X and x′ ∈ (N(u) ∩ V (F2)) \ X. As
G− u− x is hamiltonian and F1 6= K1,3, there exists a hamiltonian vw-path p′ in F2 − u
and as G − u − x′ is hamiltonian and F2 6= K1,3, there is a hamiltonian vw-path p in
F1 − u. But then p ∪ p′ is a hamiltonian cycle in G− u, so G has circumference n− 1, a
contradiction. �

Clearly, every bipartite K2-hamiltonian graph must be balanced, but we do not know
whether bipartite non-hamiltonian K2-hamiltonian graphs actually exist. Allowing hamil-
tonian graphs, examples are easily found, e.g. any prism over a cycle of even length.
Although hypohamiltonian graphs cannot be bipartite, this is similar in spirit with a
question of Grötschel asking whether there is a bipartite hypotraceable graph (a graph
admitting no hamiltonian path, but in which every vertex-deleted subgraph does contain
a hamiltonian path), see [17, Problem 4.56].

A snark is a cubic bridgeless graph which is not 3-edge-colourable (and thus non-
hamiltonian). Moreover, in order to avoid degenerate situations, one assumes it to have
girth at least 5 and to be cyclically 4-edge-connected. A snark is critical if the removal
of any two adjacent vertices results in a 3-edge-colourable graph [27]. Let G be a cubic
K2-hamiltonian graph with chromatic index 4. Then, by Proposition 1, G is a snark,
and since for every pair of adjacent vertices v, w in G the graph G − v − w contains a
bichromatic cycle of length |V (G)| − 2, we can colour the remaining edges with a third
colour, so G is a critical snark. Recall that by Vizing’s Theorem, the chromatic index of
a cubic graph is either 3 or 4. We summarise our findings:

Corollary 1. Every cubic K2-hamiltonian graph which is not 3-edge-colourable is a critical
snark.

In the light of Corollary 1 it is natural to investigate cubic K2-hamiltonian graphs
in terms of their edge-colourability. In the following, we show that two famous infinite
families of cubic non-hamiltonian graphs are K2-hamiltonian, the first having chromatic
index 3, the second chromatic index 4.
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2.1 Generalised Petersen graphs

Coxeter [9] introduced the family of generalised Petersen graphs

GP(n, k) = ({ui, vi}n−1i=0 , {uiui+1, uivi, vivi+k}n−1i=0 ),

indices mod. n, and k < n/2 (graphs in this paper are simple). Due to a certain depiction
of generalised Petersen graphs, it is common to speak of edges uiui+1 (vivi+k) as belonging
to the inner rim (outer rim), and edges uivi to be called spokes. Let P be the family of
all generalised Petersen graphs GP(n, k) with n = 5 mod. 6 and k = 2.

Proposition 2. Every member of P, in particular Petersen’s graph, is non-hamiltonian
and K2-hamiltonian.

Proof. Robertson [29] (and, independently, Bondy [2]) showed that every member of P
is non-hamiltonian. It remains to prove that the deletion of any copy of K2 produces a
hamiltonian graph. The symmetry group of the graph GP(n, 2) is transitive on the edges
if n = 5 (this case, i.e. Petersen’s graph, is left to the reader), while for n > 5 it has three
edge orbits: one containing an edge of the inner rim, one containing a spoke, and one
containing an edge of the outer rim—for each of these cases we give in Fig. 1 a solution,
where the three dots indicate any number of copies of six spokes, traversable in the obvious
and unique way inferred from the already given partial cycle. �

Fig. 1: Every member of P is K2-hamiltonian.

Since every generalised Petersen graph except for Petersen’s graph itself is 3-edge-
colourable [5], we can deduce the following from Proposition 2:

Corollary 2. There exist infinitely many cubic non-hamiltonian K2-hamiltonian graphs
which have chromatic index 3 and girth 5.

Lemma 1. If in a cubic K2-hamiltonian graph G every vertex lies on some 5-cycle, then
G is K1-hamiltonian.

Proof. By hypothesis, for every v1 ∈ V (G) there exists a 5-cycle v1v2v3v4v5. Since G is
K2-hamiltonian, G− v3− v4 contains a hamiltonian cycle h. As G is cubic, h contains the
path P := v2v1v5. In h, replace P by the path v2v3v4v5. We obtain a hamiltonian cycle
in G− v1. �

From Proposition 2 and Lemma 1 we obtain:

Corollary 3 (Bondy [2]). Every member of P is hypohamiltonian.
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Motivated by a conjecture of Grünbaum (different from the already mentioned Γ(j, j) =
∅ for all j ≥ 2), we shall investigate in Section 4 planar K2-hamiltonian graphs—however,
planar non-hamiltonian K2-hamiltonian graphs elude us. The situation changes dramati-
cally on the torus:

Corollary 4. There exist infinitely many toroidal non-hamiltonian K2-hamiltonian graphs.

Proof. This immediately follows from Proposition 2, taking into account that every mem-
ber of P is non-planar [11] yet toroidal, as shown in Fig. 2. �

Fig. 2: Every member of P is toroidal.

It is natural to wonder whether small perturbations—such as connecting a pair of non-
adjacent vertices by an edge—of a graph from a given class leaves the graph in the class.
If a hypohamiltonian graph is not maximally non-hamiltonian, i.e. non-hamiltonian, but
adding any edge from the graph’s complement renders the graph hamiltonian, then we
can add at least one edge and the resulting graph will be hypohamiltonian, and as long
as the graph has not become maximally non-hamiltonian, we can continue this procedure.
This is not necessarily true for non-hamiltonian K2-hamiltonian graphs: we do know that
the resulting graph is non-hamiltonian, but by adding an edge we must also verify that
removing this new edge and its end-vertices yields a hamiltonian graph. This discussion
motivates the following observation.

Proposition 3. For every non-negative integer k there is a non-hamiltonian K2-hamiltonian
graph to which k edges can be added such that the resulting graph is non-hamiltonian and
K2-hamiltonian. Furthermore, for every integer d ≥ 3 there exists a non-hamiltonian
K2-hamiltonian graph of maximum degree d. In particular, there exist infinitely many
non-cubic non-hamiltonian K2-hamiltonian graphs.

Proof. In this entire proof, we consider n = 5 mod. 12. Put

Gn := GP(n, 2) +
∑

i=8mod.12,
8≤i<n/2

v0vi.

We call the edges we add to GP(n, 2) new. Suppose Gn does contain a hamiltonian cycle
h (reductio ad absurdum). As discussed above, GP(n, 2) is non-hamiltonian, so h contains
at least one new edge, and since all new edges are incident with v0, it contains at most
two new edges. We treat the former case first.

Let v0vk be the new edge in h. Ignoring the spokes u0v0 and ukvk, a straightforward
case analysis reveals that there are five ways in which h traverses Gn, see Figs. 3 and 4.
The cases from Fig. 3 will be called periodic, and the cases from Fig. 4 non-periodic.
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Fig. 3: The periodic traversals π1, π2, and π3 of Gn by h.

e f

Fig. 4: The non-periodic traversals ν1 and ν2 of Gn by h.
In ν1, the edges e and f may, but need not be in h.

Periodic traversals as shown in Fig. 3 repeat every 2, 4, and 6 spokes, respectively.
These can be contracted in the obvious way; for example, if the path

P := vj−4vj−2uj−2uj−1vj−1vj+1vj+3uj+3uj+2uj+1ujvjvj+2vj+4uj+4uj+5

is contained in h for some j, we contract the two spokes uj+1vj+1 and uj+2vj+2 (traversal
π1) and P becomes vj−4vj−2uj−2uj−1vj−1vj+3uj+3ujvjvj+4uj+4uj+5 in which we contract
the four spokes uj−1vj−1, ujvj , uj+3vj+3, and uj+4vj+4 (traversal π2) so that P becomes
vj−4vj−2uj−2uj+5 and we may relabel uj+5 as uj−1, etc. Thus, it suffices to show that
G17 = GP(17, 2) + v0v8 is non-hamiltonian due to the following arguments.

The non-periodic traversal ν2 can occur at most once, and the non-periodic traversal
ν1 transitions into the periodic traversal π1 (π2) if the edge f , as defined in Fig. 4, does
not lie in h (does lie in h). Furthermore, let us call a subgraph of h containing π1, π2 or
ν1 of type 1 and a subgraph of h containing π3 or ν2 of type 2. The cycle h may contain
subgraphs of both types, but it is easy to see that switching from one type to the other
may only occur at indices 0 or k (due to the edge v0vk ∈ E(h)). If between indices 0 and k
the subgraph of h is of type 2, then after a suitable amount of contractions and relabelling,
we must have k = 8. If between indices 0 and k the subgraph of h is of type 1 and k < 8,
then k = 6 and we add, between indices 0 and k, a copy of the periodic traversal π1 to the
graph; it is straightforward to verify that for a subgraph of type 1 this is possible. The
same reasoning is applied between indices k and n− 1.

That G17 is indeed non-hamiltonian can be verified with a trivial computer program
(for instance in SageMath). A similar argumentation can be used for the case when h
contains two new edges. In this situation, it suffices to show that G41 = GP(41, 2) +
v0v8 +v0v20 is non-hamiltonian. Again, this can be verified easily and within a reasonable
amount of time with a computer program. We have proven that Gn is non-hamiltonian.

The graph GP(n, 2)− v1 − v3 has a hamiltonian cycle containing the paths

v10v8u8u7u6v6v4v2v0u0u1u2u3u4u5v5v7v9u9u10

and vn−1un−1, a situation illustrated in Fig. 1 (bottom). Replacing these paths by v10u10
and

vn−1v1v3u3u4u5v5v7v9u9u8u7u6v6v4v2u2u1u0un−1,

respectively, we obtain a hamiltonian cycle h in Gn − v0 − v8. For n ≥ 41, h contains the
paths v9u9u8 and

v22v20u20u19u18v18v16v14u14u13u12v12v10u10u11v11v13v15u15u16u17v17v19v21u21u22

which we replace by

v9u9u10u11v11v13v15u15u16u17v17v19v21u21u20u19u18v18v16v14u14u13u12v12v10v8u8
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and v22u22 in order to obtain a hamiltonian cycle in Gn − v0 − v20. This replacement can
be iterated as often as needed in order to obtain, together with the fact that every member
of GP(n, 2) ⊂ P is K2-hamiltonian (see Proposition 2), the K2-hamiltonicity of Gn. �

2.2 Flower snarks

For k ≥ 3 odd, the graphs

F4k := ({ui, vi, vi,1, vi,2}k−1i=0 , {uiui+1, uivi, vivi,1, vivi,2, vi,1vi+1,2, vi,2vi+1,1}k−1i=0 ),

indices mod. k, are the so-called flower snarks introduced by Isaacs [23]. We restrict
snarks to have girth at least 5, so we define F := {F4k}k≥5 odd. Gutt proved that a class
of graphs including the flower snarks are hypohamiltonian [19]. Another proof of their
hypohamiltonicity can be found in [8].

Proposition 4. Every member of F is K2-hamiltonian.

Proof. As in the proof of Proposition 2, we can restrict ourselves to four cases; these are
shown in Fig. 5. �

Fig. 5: Every member of F is K2-hamiltonian.

In Corollary 2 we have already seen that there are infinitely many cubic non-hamiltonian
K2-hamiltonian graphs of girth 5. By Proposition 1 no cubic non-hamiltonianK2-hamiltonian
graphs of girth 3 or 4 exist, while no such graphs of girth greater than 6 are known—
Coxeter’s graph, which has girth 7, is not K2-hamiltonian. From Proposition 4 we obtain
the following result, as Clark and Entringer [8] proved that every member of F is maxi-
mally non-hamiltonian.

Corollary 5. There exist infinitely many maximally non-hamiltonian K2-hamiltonian
critical snarks of girth 6.

3 Operations preserving K2-hamiltonicity

We present three operations on graphs designed to obtain new non-hamiltonian K2-
hamiltonian from given graphs with certain hamiltonian properties. The first such op-
eration is a variation of a gluing result on hypohamiltonian graphs due to Thomassen [35]
and motivated by our desire to describe non-hamiltonian K2-hamiltonian graphs with as
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few hamiltonian vertex-deleted subgraphs as possible: as discussed above, every member
of P ∪ F is non-hamiltonian and K2-hamiltonian, but is K1-hamiltonian as well, which
was perhaps to be expected. Thus, these graphs constitute solutions to (K), but can-
not be counterexamples to (G) as this would require the circumference to be 2 less than
the graph’s order. With this operation, we show that non-hamiltonian K2-hamiltonian
graphs are not necessarily K1-hamiltonian. Thereafter, we discuss under which conditions
the well-known “dot product”, which is frequently used in the context of snarks but has
also been applied to settle a question of McKay on planar hypohamiltonian graphs [16],
can be used for K2-hamiltonicity. Lastly, we present an operation based on the hamilto-
nian properties of the dodecahedron which not only preserves 3-regularity, but also yields
non-hamiltonian K2-hamiltonian graphs with fewer hamiltonian vertex-deleted subgraphs
than in the graphs inferred from the first operation.

3.1 A variation of a gluing lemma of Thomassen

In a 2-connected non-hamiltonian graph G, we call exc(G) ⊂ V (G), which contains every
vertex v of G such that G − v is non-hamiltonian, the set of exceptional vertices of G.
A 2-connected graph G is k-hypohamiltonian if G is non-hamiltonian and |exc(G)| =
k < |V (G)|. Every non-hamiltonian K2-hamiltonian graph G with exc(G) = V (G) is a
counterexample to (G).

Lemma 2. Let G1 and G2 be disjoint non-hamiltonian K2-hamiltonian graphs. For
i ∈ {1, 2}, let Gi contain a 3-cut Xi and Xi-fragments Fi and F ′i such that for each x ∈ Xi

there is a hamiltonian path in Fi − x and in F ′i − x between the two vertices of Xi − x.
This is fulfilled e.g. when Xi is non-trivial, or exc(Gi) ∩Xi = ∅. Then, if both F1 and F2

are non-trivial, or both Fi and F ′3−i are trivial, then (F1, X1)
... (F2, X2) is K2-hamiltonian,

but not hamiltonian.

Proof. Put Xi = {xi1, xi2, xi3} such that the bijection between X1 and X2 identifies x1j
and x2j . Let G denote the graph we obtain through this identification. We see F1 and F2

as subgraphs of G, write xj for the vertex obtained when identifying x1j and x2j , and put
X = {x1, x2, x3}. Suppose (reductio ad absurdum) that G contains a hamiltonian cycle h.
In the following we shall make frequent and tacit use of Proposition 1 (iii), and of the fact
that if Fi is trivial, F ′i is not. Either h[V (F1)] is a hamiltonian path of F1 between two
vertices of X or h[V (F2)] is a hamiltonian path of F2 between two vertices of X. Without
loss of generality we may suppose that F1 contains a hamiltonian x2x3-path p1. As G1 is
non-hamiltonian and K2-hamiltonian, we have c(G1−X1) = 2 (Proposition 1 (ii)), so the
X1-fragments of G1 are F1 and F ′1. In G1, by hypothesis, F ′1−x11 contains a hamiltonian
x12x13-path p′1. But then, seeing F1 now as lying in G1, we obtain the hamiltonian cycle
p1 ∪ p′1 in G1, a contradiction.

Next we show that G is K2-hamiltonian. Let ab be an arbitrary edge of G. We need to
prove that G− a− b is hamiltonian. We distinguish between two cases depending on the
position of the vertices a, b. By the definition of G, it is not possible that one of a and b
is in F1−X and the other is in F2−X. By Proposition 1 (ii), a, b ∈ X is also impossible.

Case 1. a, b 6∈ X. We may suppose without loss of generality that a, b ∈ V (F2)\X. Since
G2 is K2-hamiltonian, there is a hamiltonian cycle h in G2−a−b. Hence h[V (F2)\{a, b}] is
either a hamiltonian path in F2−a− b between two vertices of X2, say x21 and x23, or the
disjoint union of a path between two vertices of X2, say x21 and x23, and the isolated vertex
x22. In fact, the latter case is impossible, since this would imply that p = h[V (F ′2)] is a
hamiltonian x21x23-path in F ′2, and therefore the union of p and a hamiltonian x21x23-path
in F2 − x22 (guaranteed to exist by the conditions of the lemma) would be a hamiltonian
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cycle of G2. (Note that while we essentially used Proposition 1 (iii), we needed the above
argument, since X could be a trivial 3-cut.) Thus, we know that q2 = h[V (F2)\{a, b}] is a
hamiltonian x21x23-path of F2− a− b. By the conditions of the lemma, F1− x12 contains
a hamiltonian x11x13-path q1. Now q1 ∪ q2 is a hamiltonian cycle of G− a− b.
Case 2. a ∈ X, b 6∈ X. Without loss of generality we may assume that b ∈ V (F2) \X.
There are two subcases we need to distinguish: first, assume that F2 is non-trivial. Note
that in this situation F1 may be trivial or non-trivial. Since G2 is K2-hamiltonian, there
is a hamiltonian cycle h in G2−a− b. Then p2 = h[V (F2)\{a, b}] is a hamiltonian x2ix2j-
path of F2 − a− b for appropriate i, j. By the conditions of the lemma, F1 − a contains a
hamiltonian x1ix1j-path which together with p2 yields a hamiltonian cycle of G − a − b.
Second, suppose that F2 is trivial. Then, by hypothesis, F ′1 is trivial as well. Thus, as G1

is K2-hamiltonian, F1 − a contains a hamiltonian cycle h′. Considering h′ now as lying in
G we have proven that G− a− b is hamiltonian. �

Denote the family of all k-hypohamiltonian graphs by Hk. The next lemma is a gen-
eralisation of Thomassen’s [35, Corollary 1] and a slightly stronger version of the author’s
[42, Theorem 6]—the proof of this strengthening is identical to the one given in [42], so
we omit it.

Lemma 3. Let i, j be non-negative integers and consider disjoint graphs G ∈ Hi and
H ∈ Hj. We require G and H to contain cubic vertices x and y, respectively, such that
N(x)∩exc(G) = ∅ and N(y)∩exc(H) = ∅. Let FG (FH) be the non-trivial N(x)-fragment
(N(y)-fragment) of G (H). Then (FG, N(x))

... (FH , N(y)) ∈ Hi+j.

Proposition 5 (Goedgebeur [14]). The smallest non-hypohamiltonian K2-hamiltonian
snark has 26 vertices (see Fig. 6). It has two exceptional vertices. Furthermore, there
exists a K2-hamiltonian snark with 28 vertices which has exactly one exceptional vertex.

w′
0

w′
1

w′
2

w′
3

w′
4

Fig. 6: A K2-hamiltonian snark on 26 vertices.
Its two exceptional vertices are circled.

Theorem 1. For every non-negative integer k there exists an infinite family of non-
hamiltonian K2-hamiltonian graphs G with |exc(G)| = k.

Proof. For k = 0 the statement is given by Proposition 2 and Corollary 3, so henceforth
we consider the case k ≥ 1. For this purpose we first describe for every k ≥ 1 a non-
hamiltonian K2-hamiltonian graph G with |exc(G)| = k.

By Proposition 5, there exists a K2-hamiltonian snark Γ with 28 vertices which has
exactly one exceptional vertex. Consider a copy Γ′ of Γ, and denote by w′ and w their
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respective exceptional vertices. Consider x ∈ (V (Γ) \N [w]) and y ∈ (V (Γ′) \N [w′]). Let
F (F ′) be the non-trivial N(x)-fragment (N(y)-fragment) of Γ (Γ′). Then, by Lemma 3,
(F,N(x))

... (F ′, N(y)) ∈ H2 and by Lemma 2, this graph is also K2-hamiltonian. Since
in each step many non-exceptional vertices are added, we can iterate this procedure and
obtain for every k ≥ 1 a K2-hamiltonian graph Γk ∈ Hk. (In order to obtain Γk, we apply
the procedure k − 1 times.)

Let {G`}`∈N be an infinite family of hypohamiltonian K2-hamiltonian graphs, each
containing a cubic vertex x` (e.g. P). Let F` be the non-trivial N(x`)-fragment of G`. By
construction, Γk contains a cubic vertex yk such that no vertex of N(yk) is exceptional.
Let F ′k be the non-trivial N(yk)-fragment of Γk. Then, once more invoking Lemmas 2
and 3, {(F`, N(x`))

... (F ′k, N(yk))}`,k∈N yields the statement. �

The graphs described in the proof of Theorem 1 provide an additional (to the ones
from Proposition 3) infinite family of non-hamiltonian K2-hamiltonian graphs which are
not cubic.

3.2 The dot product

The second operation we want to discuss is the well-known dot product of two graphs.
Let G and H be disjoint graphs on at least six vertices. For independent edges ab, cd in G
and adjacent cubic vertices x and y in H, consider G′ = G− ab− cd and H ′ = H − x− y,
and let a′, b′ be the neighbours of x in H − y and c′, d′ be the neighbours of y in H − x.
Then the dot product G ·H is defined as the graph

(V (G) ∪ V (H ′), E(G′) ∪ E(H ′) ∪ {aa′, bb′, cc′, dd′}).

Proposition 6. Let G and H be disjoint non-hamiltonian graphs with a, b, c, d ∈ V (G)
and a′, b′, c′, d′, x, y ∈ V (H) as introduced above—in particular, x and y are cubic—, a, b /∈
NG(c) ∪NG(d), a′ /∈ NH(b′), and c′ /∈ NH(d′). If

(i) for any vw ∈ E(G) there exists in G − v − w a hamiltonian ab-path not containing
cd or a hamiltonian cd-path not containing ab;

(ii) for any v ∈ {a, b} and w ∈ {c, d}, the graph G admits a hamiltonian vw-path con-
taining neither ab nor cd;

(iii) G−a and G−b contain a hamiltonian cycle through cd, and G−c and G−d contain
a hamiltonian cycle through ab;

(iv) H − x and H − y are hamiltonian, and

(v) for any vw ∈ E(H) with v, w /∈ {x, y} there exists in H−v−w a hamiltonian st-path
with s ∈ {a′, b′} and t ∈ {c′, d′},

then G ·H is non-hamiltonian and K2-hamiltonian.

Proof. We see G − ab − cd and H − x − y as subgraphs of G · H. We first show that
G ·H is non-hamiltonian. Assume G ·H contains a hamiltonian cycle h. h ∩ (H − x− y)
must be either an a′b′-path or a c′d′-path, as otherwise we would obtain a contradiction:
either a simple modification of h ∩ (H − x − y) would yield a hamiltonian cycle in H, or
h ∩ (H − x − y) consists of an a′b′-path P and a c′d′-path Q such that P ∩ Q = ∅ and
P ∪Q spans H − x− y, but then (h ∩ (G− ab− cd)) + ab + cd is a hamiltonian cycle in
G. Without loss of generality let h ∩ (H − x− y) be an a′b′-path. This implies that there
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exists a hamiltonian ab-path p in G− ab− cd. In this case p + ab would be a hamiltonian
cycle in G, yet again a contradiction.

In the remainder of the proof it is shown that G · H is K2-hamiltonian. Consider
vw ∈ E(G). By (i) there exists in G− v−w a hamiltonian ab-path not containing cd or a
hamiltonian cd-path not containing ab; assume the former and call it p. By (iv), H−x−y
contains a hamiltonian a′b′-path q. Now p∪ q is a hamiltonian cycle in G ·H− v−w. The
case when there exists in G− v−w a hamiltonian cd-path not containing ab is analogous.

By (iii) there is a hamiltonian cd-path p in G − a, and (iv) implies that there is a
hamiltonian c′d′-path q in H − x− y. Hence p∪ q is a hamiltonian cycle in G ·H − a− a′.
The cases when removing b, b′ or c, c′ or d, d′ can be dealt with in the same way.

Consider vw ∈ E(H) with v, w /∈ {x, y}. By (v) there exists in H−v−w a hamiltonian
s′t′-path p with s′ ∈ {a′, b′} and t′ ∈ {c′, d′}. Let NG·H(s′) ∩ V (G) = {s} and NG·H(t′) ∩
V (G) = {t}. By (ii) there exists a hamiltonian st-path containing neither ab nor cd, which
together with p forms a hamiltonian cycle in G ·H − v − w. �

The many requirements imposed on G and H in Proposition 6 make it impractical.
The most natural choice would be to consider the dot product of two copies of Petersen’s
graph. There are two ways to do so, yielding two non-isomorphic graphs: the Blanuša
snarks. Unfortunately, not all of the lemma’s conditions are met, and these two snarks
turn out not to be K2-hamiltonian. Lemma 2 is much more widely applicable but does
not conserve 3-regularity. We therefore now introduce an operation without too restrictive
requirements, yet maintaining 3-regularity.

3.3 Inserting a dodecahedron

Let C = v0 . . . v4 be a 5-cycle in the 1-skeleton of the dodecahedron. In this and the next
paragraph, indices are to be considered mod. 5. Insert on each edge vivi+1 a new vertex
wi. Let G be a graph containing a 5-cycle w′0 . . . w

′
4. For each i, identify w′iw

′
i+1 with the

path wivi+1wi+1 in order to obtain PC(G). The relevant part of PC(G) is illustrated in
Fig. 7.

w′
0 = w0

v1

w′
1 = w1

v2

w′
2 = w2v3

w′
3 = w3

v4

w′
4 = w4

v0

v5
v11 v6

v12

v7

v13
v8

v14

v9

v10
v15

v16

v17
v18v19

w′′
0

w′′
1

w′′
2w′′

3

w′′
4

Fig. 7: The image of the 5-cycle w′0 . . . w
′
4 under the operation PC .

In a graph G, a 5-cycle C ′ = w′0 . . . w
′
4 composed of cubic vertices, and such that w′′i is

the neighbour of w′i not on C ′ (see Fig. 7) is called extendable if for any i, (i) there exists
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a hamiltonian cycle h in G−w′i with w′i−2w
′
i+2 /∈ E(h) and (ii) there exists a hamiltonian

cycle h′ in G− w′′i with h′ ∩ C ′ = w′i−2w
′
i−1w

′
iw
′
i+1w

′
i+2.

Theorem 2. Let G be a K2-hamiltonian graph containing an extendable 5-cycle C.
Then PC(G) is a K2-hamiltonian graph containing an extendable 5-cycle. If G is non-
hamiltonian or cubic, then so is PC(G), respectively. If G has girth at least 5, then PC(G)
has girth 5. If G is plane and C a facial cycle in G, then PC(G) is planar.

Proof. In the entirety of this proof, we refer to Fig. 7 and the notation introduced therein.
Moreover, when considering a cycle D in G, we shall frequently switch to seeing it as a
cycle in PC(G), where if an edge w′iw

′
i+1 of C belongs to D it shall be replaced by its

corresponding path w′ivi+1w
′
i+1 in PC(G), indices mod. 5. We first show that PC(G) is

K2-hamiltonian. Consider vw ∈ E(PC(G)). With the following seven cases, we cover all
situations (up to symmetry).

Case 1. v, w /∈ {w0, . . . , w4, v0, . . . , v19}. Let h be a hamiltonian cycle in G−v−w. There
are two essentially different cases to consider: Case 1.1. h ∩ C is the path w′0w

′
1w
′
2w
′
3w
′
4,

which, if we see h as lying in PC(G), becomes the path w′0v1w
′
1v2w

′
2v3w

′
3v4w

′
4. In PC(G),

replace in this path the edge w′0v1 by

w′0v0v5v10v9v14v8v13v7v12v17v18v19v15v16v11v6v1.

Case 1.2. h∩C is the union of the paths w′0v0w
′
4 and w′1v2w

′
2v3w

′
3. Replace in the former

the edge w′0v0 and in the latter the edge v3w
′
3 by

w′0v1v6v12v7v13v18v17v16v11v5v0 and v3v8v14v19v15v10v9v4w
′
3,

respectively.

Case 2. v = w′0, w = w′′0 . By property (ii) of C, there exists a hamiltonian cycle h in
G − w′′0 such that h ∩ C = w′3w

′
4w
′
0w
′
1w
′
2 which corresponds to w′3v4w

′
4v0w

′
0v1w

′
1v2w

′
2 in

PC(G). Replace in h the path v0w
′
0v1w

′
1v2w

′
2 by

v0v5v11v16v17v12v6v1w
′
1v2v7v13v18v19v15v10v9v14v8v3w

′
2

and we obtain a hamiltonian cycle in PC(G)− w′0 − w′′0 as desired.

Case 3. v = v0, w = w′0. As G is K2-hamiltonian, there exists a hamiltonian cycle
in G − w′2 − w′3 whose intersection with C is the path w′1w

′
0w
′
4 which corresponds to

w′1v1w
′
0v0w

′
4 in PC(G). Replace in h the path v1w

′
0v0w

′
4 by

v1v6v12v17v18v19v15v16v11v5v10v9v14v8v13v7v2w
′
2v3w

′
3v4w

′
4.

Case 4. v = v0, w = v5. By property (i) of C, there exists a hamiltonian cycle h in
G − w′1 such that h ∩ C is composed of the paths w′0w

′
4 and w′2w

′
3 which correspond to

w′0v0w
′
4 and w′2v3w

′
3 in PC(G), respectively. Replace in h, now seen as lying in PC(G), the

former path by

w′0v1w
′
1v2v7v13v8v14v19v18v17v12v6v11v16v15v10v9v4w

′
4,

while the latter path remains unchanged.

Case 5. v = v5, w = v11. As G is K2-hamiltonian, there exists a hamiltonian cycle
in G − w′1 − w′2 whose intersection with C is the path w′0w

′
4w
′
3 which corresponds to

w′0v0w
′
4v4w

′
3 in PC(G). Replace in this path the edge v4w

′
3 by

v4v9v10v15v16v17v18v19v14v8v13v7v12v6v1w
′
1v2w

′
2v3w

′
3.
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Case 6. v = v11, w = v16. By property (i) of C, there exists a hamiltonian cycle h in
G − w′2 such that h ∩ C is composed of the paths w′0w

′
1 and w′3w

′
4 which correspond to

w′0v1w
′
1 and w′3v4w

′
4 in PC(G). Replace in h the edges w′0v1 and w′3v4 by

w′0v0v5v10v15v19v18v17v12v6v1 and w′3v3w
′
2v2v7v13v8v14v9v4,

respectively.

Case 7. v = v15, w = v16. As G is K2-hamiltonian, there exists a hamiltonian cycle
in G − w′0 − w′1 whose intersection with C is the path w′2w

′
3w
′
4 which corresponds to

w′2v3w
′
3v4w

′
4 in PC(G). Replace in this path the edge v4w

′
4 by

v4v9v10v5v11v6v12v17v18v19v14v8v13v7v2w
′
1v1w

′
0v0w

′
4.

We now show that PC(G) contains an extendable 5-cycle, namely C ′ = v15 . . . v19.
We first verify property (i) for C ′, i.e. prove that there exists a hamiltonian cycle h in
PC(G) − v16 such that v18v19 /∈ E(h). (The treatment of the other vertices of C ′ is
analogous.) By property (i) of C, there exists a hamiltonian cycle in G − w′1 whose
intersection with C are the paths w′0w

′
4 and w′2w

′
3 which correspond to w′0v0w

′
4 and w′2v3w

′
3

in PC(G). In PC(G), replace in these paths the edges w′0v0 and v3w
′
3 by

w′0v1w
′
1v2v7v13v18v17v12v6v11v5v0 and v3v8v14v19v15v10v9v4w

′
3,

respectively. Let us prove property (ii) for C ′ by showing that there exists a hamiltonian
cycle in PC(G)− v11 whose intersection with C ′ is v18v17v16v15v19. (The treatment of the
vertices v10, v12, v13, v14 is analogous.) As above, since C satisfies property (i), there exists
a hamiltonian cycle h in G−w′1 such that w′3w

′
4 /∈ E(h). In PC(G), replace in w′0v0w

′
4 and

w′2v3w
′
3 the edges v0w

′
4 and w′2v3 by

v0v5v10v9v4w
′
4 and w′2v2w

′
1v1v6v12v7v13v18v17v16v15v19v14v8v3,

respectively.
It remains to prove that if G is non-hamiltonian, then so is PC(G). Put R :=

PC(G)[{v5, . . . , v19}] and R′ := PC(G)[{v0, . . . , v19}]. Assume PC(G) does contain a hamil-
tonian cycle h (reductio ad absurdum). We leave to the reader the straightforward verifi-
cation of the fact that h can only intersect R in two ways (up to symmetry): either in (a)
a spanning v5v6-path P or (b) two disjoint paths Q1 and Q2 which together span R, the
former a v5v6-path and the latter a v7v8-path.

(a) As h is a hamiltonian cycle, without loss of generality v6v1w
′
0 and v5v0w

′
4v4w

′
3v3w

′
2v2w

′
1

lie in h. Then h − R′ together with the path w′0w
′
4w
′
3w
′
2w
′
1 yields a hamiltonian cycle in

G, a contradiction.
(b) Either the path v5v0w

′
0 or the path v6v1w

′
0 must lie in h. Suppose the former is true

(treating the latter case is analogous). This implies that the paths v8v3w
′
3v4w

′
4, v6v1w

′
1,

and v7v2w
′
2 must lie in h. But then, by considering h − R′ together with the edge w′0w

′
1

and the path w′2w
′
3w
′
4 we would obtain a hamiltonian cycle in G, a contradiction. �

Variations of condition (ii) in the definition of an extendable 5-cycle C ′ are possible,
e.g. one might relax it to: (ii’) there exists a hamiltonian cycle h′ in G − w′′i such that
h′ ∩ C ′ is one of the paths

w′i−2w
′
i+2w

′
i+1w

′
iw
′
i−1, w

′
i−2w

′
i−1w

′
iw
′
i+1w

′
i+2, w

′
i+1w

′
iw
′
i−1w

′
i−2w

′
i+2

or there exists a hamiltonian cycle h′′ in G−w′i−w′′i such that h′′∩C ′ has one component.
However, this did not seem to substantially increase its applicability, so we opted for the
present version which is easier to handle.
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An example of a graph to which Theorem 2 can be applied is Goedgebeur’s snark
and its 5-cycle w′0 . . . w

′
4, see Fig. 6. It is however noteworthy that when applying the

operation PC to a cubic graph with chromatic index 4, the resulting graph may have
chromatic index 3. This occurs for instance if PC is applied to (any 5-cycle of) Petersen’s
graph.

We now present an application of Theorem 2. Let G be the family of all non-hamiltonian
K2-hamiltonian graphs. In the light of (G), we set

ρ := sup
G∈G

|exc(G)|
|V (G)|

.

Furthermore, let ρ3 be defined in the same way but restricted to cubic graphs. By Proposi-
tion 5 there is a K2-hamiltonian snark Γ on 26 vertices containing exactly two exceptional
vertices, and proceeding as in the proof of Theorem 1, from Γ we obtain Γk, which has 2k
exceptional vertices and order 21k + 5. Therefore ρ ≥ 2

21 . But with the operation PC a
better bound can be proven:

Corollary 6. We have ρ3 ≥ 1
4 .

Proof. Applying, iteratively, the operation PC to any 5-cycle C of the Petersen graph
G—the straightforward verification that C indeed satisfies conditions (i) and (ii) is left
to the reader—by Theorem 2 an infinite family of cubic non-hamiltonian K2-hamiltonian
graphs is obtained.

Let P k
C(G) be the graph resulting from a k-fold application of PC to G (with P 0

C(G) =
G). We now investigate the occurrence of non-hamiltonian vertex-deleted subgraphs in
P k
C(G) for k ≥ 1. Using the notation from Fig. 7, we show that P k

C(G) − v0 is non-
hamiltonian. Assume this graph does contain a hamiltonian cycle h (reductio ad absur-
dum). We argue as in the proof of Theorem 2. Define R := P k

C(G)[{v5, . . . , v19}] and
R′ := P k

C(G)[{v0, . . . , v19}]. Then h can only intersect R in three ways (up to symmetry):
either in (a) a spanning v6v7-path P or (b) a spanning v7v8-path P ′ or (c) two disjoint
paths Q1 and Q2 which together span R, the former a v6v7-path and the latter a v8v9-path.

(a) As h is a hamiltonian cycle in P k
C(G)−v0, we have v6v1w

′
0 ⊂ h and thus v7v2w

′
1 ⊂ h.

But then the path w′2v3w
′
3v4w

′
4 is also contained in h, and by adding to h − R′ (seen as

lying in P k−1
C (G)) the edges w′0w

′
1, w

′
2w
′
3, w

′
3w
′
4, we obtain a hamiltonian cycle in P k−1

C (G),
a contradiction.

(b) We either have (1) v7v2w
′
1v1w

′
0 ⊂ h and thus v8v3w

′
2 ⊂ h and w′3v4w

′
4 ⊂ h, or

(2) v7v2w
′
2 ⊂ h and thus w′0v1w

′
1 ⊂ h and v8v3w

′
3v4w

′
4 ⊂ h. In the former case, by

adding to h−R′ the edges w′0w
′
1, w

′
1w
′
2, w

′
3w
′
4, we obtain a hamiltonian cycle in P k−1

C (G),
a contradiction. Case (2) can be dealt with in the same way.

(c) We have that v6v1w
′
0 is a subpath of h, and thus also v7v2w

′
1, v8v3w

′
2, and either

v9v4w
′
3 or v9v4w

′
4, whence w′4 /∈ V (h) or w′3 /∈ V (h), respectively, which is absurd.

We have proven that P k
C(G) − v0 is non-hamiltonian, and with analogous arguments

it can be shown that P k
C(G) − vi is non-hamiltonian for i ∈ {1, 2, 3, 4}. Therefore, as

exceptional vertices remain exceptional after applying PC , we have |exc(P k
C(G))| ≥ 5k,

and since |V (P k
C(G))| = 10 + 20k, the proof is complete. �
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4 The planar case

In this section, we investigate the structural properties of planar K2-hamiltonian graphs.
By Euler’s formula and Proposition 1, we have:

Corollary 7. Every planar cubic K2-hamiltonian graph of order n contains an (n − 1)-
cycle or an n-cycle. Equivalently, planar cubic K2-hamiltonian graphs of order n and
circumference n− 2 do not exist. In particular, among planar cubic graphs there exist no
counterexamples to (G).

The motivation for the following theorem is threefold. (1) In 1978 Thomassen showed
that every planar hypohamiltonian graph contains a cubic vertex [35]. With a different
approach than his, we now prove a K2-hamiltonian analogue of this result. (2) Thomas
and Yu [32] showed that in a planar 4-connected graph the removal of any pair of vertices
yields a hamiltonian graph, so the family of all planar 4-connected graphs is a subclass
of the family K of all planar K2-hamiltonian graphs of minimum degree at least 4, and
it is not difficult to see that these families do not coincide. In the following theorem
we settle affirmatively the natural question whether every member of K is hamiltonian,
thus extending Tutte’s classic theorem that planar 4-connected graphs are hamiltonian.
(3) Nelson [28] observed that it follows from Tutte’s paper [37] that planar 4-connected
graphs are not only hamiltonian, but K1-hamiltonian. This was extended by Thomas and
Yu [32] who showed that the removal of any set of at most two vertices from a planar
4-connected graph yields a hamiltonian graph. Sanders [30] proved that every planar 4-
connected graph is K3-hamiltonian. By Euler’s formula, every planar 4-connected graph
contains a triangle, so these results imply that every planar 4-connected graph contains a
cycle of length n− 1, n− 2, and n− 3. We will show that the same holds for every graph
in K.

Our proof strategy follows the same lines as the one used by the author in [43]. The fol-
lowing lemma is a special case of a central lemma from [4]. Alternatively, its statement (i)
can also be inferred from the Sanders-Thomas-Yu “Three Edge Lemma” (see (2.7) in [32]
or [30]) while its statement (ii) follows from Sanders’ result that in a planar 4-connected
graph there exists a hamiltonian cycle through any two of its edges [31].

Lemma 4. Let G be a plane 4-connected graph and let ∆ = xyz be a triangular face in
G. Then there is a hamiltonian yz-path

(i) in G− x containing no edge of ∆, and

(ii) in G containing no edge of ∆.

Theorem 3. If in a planar graph G of order n, size m, and minimum degree at least 4 at
least m−8 K2-deleted subgraphs are hamiltonian, then G is hamiltonian. If at least m−2
K2-deleted subgraphs of G are hamiltonian, then G must also contain an (n−1)-cycle and
an (n− 3)-cycle.

Proof. We begin by proving the first statement. By Tutte’s result that planar 4-connected
graphs are hamiltonian [37], only the connectivity 2 and connectivity 3 cases remain to
be settled. Consider the former. Then G contains a 2-cut {v, w}. The removal of v or
w and one of its neighbours (which may be v or w) cannot yield a hamiltonian graph. v
and w are incident with at least seven edges. It is easy to see that each component of
G− v − w contains at least two edges and therefore at least three vertices. Thus, each of
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these components contains adjacent vertices whose removal yields a hamiltonian graph in
which {v, w} is a 2-cut. So we have a hamiltonian vw-path in each of the {v, w}-fragments
(of which, thus, there must be exactly two). Their union yields the desired hamiltonian
cycle in G.

We now treat the 3-connected case. It is well-known (for a proof, see [4]) that a planar
graph of connectivity 3 contains a 3-cut X = {x, y, z} such that for at least one of the
X-fragments F and F ′ (as K3,3 is non-planar there are exactly two such fragments), say
F , the graph F = F + xy + yz + zx is either K4 or 4-connected. As G has minimum
degree at least 4, the former case is impossible, so F is 4-connected and clearly planar.
Such a planar 4-connected graph has size at least 12. However, we do not know whether
the edges xy, yz, zx are present in G, so the size of F is at least 9. Therefore, F contains
an edge vw such that G − v − w is hamiltonian. Since X is a 3-cut, the hamiltonicity of
G−v−w implies, ignoring analogous cases, that there exists either a hamiltonian yz-path
p′ in F ′ − x (for v = x or w = x) or F ′ (for v, w /∈ X). Let us now treat these two
situations.

Case 1. There is a hamiltonian yz-path p′ in F ′ − x. By Lemma 4 (ii) we have a
hamiltonian yz-path p in F using none of the edges xy, yz, zx. Then p∪p′ is a hamiltonian
cycle in G.

Case 2. There is a hamiltonian yz-path p′ in F ′. By Lemma 4 (i) there is a hamiltonian
yz-path p in F − x. Since none of the edges xy, yz, zx lie in p, the path p lies in F − x.
As above, p ∪ p′ is a hamiltonian cycle in G.

Thus, the first statement is proven.
Let us show the second statement and begin our reasoning as above. However, we now

know that without loss of generality F ′−x−v contains a hamiltonian yz-path q′ for some
vertex v in G − F adjacent to x. Using Lemma 4 (ii) as above, we obtain a hamiltonian
cycle in G− v.

As G − x − w contains a hamiltonian cycle for some vertex w in G − F ′ adjacent to
x, we obtain a hamiltonian yz-path q in F − x− w. Now q ∪ q′ is a hamiltonian cycle in
G− x− v − w. �

It was shown by Bondy and Jackson [3] that a planar graph containing exactly one
hamiltonian cycle has at least two vertices of degree 2 or 3. For the graph G from the
proof of Theorem 3 we have shown that G is hamiltonian, and as G has minimum degree
at least 4, by the theorem of Bondy and Jackson it must in fact contain at least two
hamiltonian cycles.

It follows directly from Theorem 3 that every planar non-hamiltonian K2-hamiltonian
graph contains a cubic vertex. (This is not true if the non-hamiltonicity requirement is
dropped, as planar 4-connected graphs are K2-hamiltonian [32].) Using an approach of
Thomassen [35], we now present another proof of this fact and also extend it, showing
that at least four cubic vertices must be present.

Theorem 4. Every planar non-hamiltonian K2-hamiltonian graph contains four cubic
vertices.

Proof. In this proof we make use of the theorem stating that a planar 3-connected graph
containing at most three 3-cuts must be hamiltonian [4], so a planar non-hamiltonian
K2-hamiltonian graph contains at least four 3-cuts. Let G be a smallest planar non-
hamiltonian K2-hamiltonian graph with minimum degree at least 4, so no 3-cut of G is
trivial. Since G has more than one 3-cut, by Thomassen’s [35, Lemma 3] there exists a
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non-trivial 3-fragment F of G with fewer than n+3
2 vertices, where n denotes the order of

G.
Gluing F and a copy of F using Lemma 2 (by identifying, using a bijection, their

respective attachments) we obtain a planar non-hamiltonian K2-hamiltonian graph with
minimum degree at least 4 of order smaller than n, which contradicts the minimality of
G. (By Proposition 1 (ii), every attachment of F has degree at least 2 in F , and every
vertex in F excluding its attachments has degree at least 4 as G has minimum degree at
least 4.) We have proven that a planar non-hamiltonian K2-hamiltonian graph contains
at least one cubic vertex.

Now let G be a smallest planar non-hamiltonian K2-hamiltonian graph containing at
most two cubic vertices. As above, we know that G contains a non-trivial X-fragment
F of order less than n+3

2 and that no cubic vertex of G resides in X. We distinguish
between three cases: either F contains no cubic vertex in which case gluing F to a copy
of F we obtain a planar non-hamiltonian K2-hamiltonian graph of minimum degree at
least 4, a contradiction to the above paragraph; or F contains exactly one cubic vertex,
in which case gluing F to a copy of F yields a planar non-hamiltonian K2-hamiltonian
graph containing at most two cubic vertices, contradicting the minimality of G; or F
contains exactly two cubic vertices (which cannot be attachments of F ), in which case
consider the other fragment of G with attachments X, say F ′, and glue F ′ to a copy
of F ′, producing a planar non-hamiltonian K2-hamiltonian graph of minimum degree at
least 4, in contradiction with the above paragraph. We have proven that every planar
non-hamiltonian K2-hamiltonian graph contains at least three cubic vertices.

Finally, assume there exists a planar non-hamiltonianK2-hamiltonian graph containing
exactly three cubic vertices. Then there must exist a 3-fragment in G containing at most
one cubic vertex. Gluing this fragment to its copy yields a planar non-hamiltonian K2-
hamiltonian graph containing at most two cubic vertices, a contradiction to the above
paragraph. �

5 K2-traceable graphs

A well-known Helly-type result is that if T is a tree and T a set of pairwise intersecting
subtrees of T , then there is a vertex v ∈ V (T ) such that every tree in T contains v. If
we widen our scope to graphs containing cycles, the original statement does not hold, but
it is well-known that every two longest paths in a graph intersect. In 1966, Gallai [13]
asked whether every connected graph has a vertex that appears in all longest paths.
On the one hand, Walther [38] proved that this is not the case, and every graph which
is hypotraceable (i.e. non-traceable, but every vertex-deleted subgraph is traceable) also
provides a negative answer to Gallai’s question. On the other hand, substantial efforts
have been made to prove that in certain classes of graphs we can guarantee that the
intersection of all longest paths is non-empty, see [6] for a recent contribution.

As an application of the results presented above, and as a natural counterpart to non-
hamiltonian K2-hamiltonian graphs, we study in this section non-traceable K2-traceable
graphs which, we recall, are non-traceable graphs in which the removal of any copy of K2

yields a traceable graph. We shall see that among non-traceable K2-traceable graphs, there
exist examples satisfying Gallai’s aforementioned condition as well as examples which do
not satisfy it. But first, we present an infinite family of non-traceable K2-traceable graphs
which includes the smallest known such graph.
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5.1 Searching for a smallest example

The following result is a variation of a technique of Thomassen [33], initially designed to
obtain hypotraceable graphs from hypohamiltonian graphs.

Proposition 7. Let G1, ..., G4 be pairwise disjoint non-hamiltonian K2-hamiltonian graphs
containing cubic vertices vi ∈ V (Gi) with N(vi) = {vi1, vi2, vi3} such that for every vij the
graph Gi − vij is hamiltonian. In

⋃
iGi − vi identify v11 with v21 and v31 with v41, and

add the edges v12v32, v22v42, v13v33, v23v43. The resulting graph Γ is non-traceable and K2-
traceable.

Proof. The non-traceability of Γ can be shown as in Thomassen’s proof [33] and is therefore
omitted. We see each Gi − vi as a subgraph of Γ. Let vw ∈ E(G1 − v1). Note that, as
v1 is cubic, by Proposition 1 (i), it is impossible for both v and w to be neighbours of
v1. Since G1 − v −w is hamiltonian, there exist i, j such that G1 − v −w − v1 contains a
hamiltonian v1iv1j-path p1. There are two essentially different situations.

Case 1. 1 ∈ {i, j}. Without loss of generality put i = 1 and j = 2. In G3 − v3 − v32
there is a hamiltonian cycle h3. Let x be a neighbour of v32 on h3. Remove from h3 ∪{v3}
an edge incident with x and add the edge xv32 to obtain a hamiltonian path p3 in G3− v3
having v32 as an end-vertex. As G2−v22 is hamiltonian, there exists a hamiltonian v21v23-
path p2 in G2− v2− v22. Since G4− v41 is hamiltonian, there is a hamiltonian v42v43-path
p4 in G4 − v4 − v41. We now see p1, p2, p3, and p4 as paths in Γ and recall that v11 = v21
and v31 = v41. Adding to p3 ∪ p1 ∪ p2 ∪ p4 the edges v32v12, v23v43, v42v22, we obtain a
hamiltonian path in Γ− v − w.

Case 2. 1 /∈ {i, j}. Without loss of generality put i = 2 and j = 3. As G3 − v33 is
hamiltonian, there is a hamiltonian v32v31-path p′3 in G−v3−v33. Similarly, in G4−v4−v42
there exists a hamiltonian v41v43-path p′4 and in G2 − v2 − v21 there exists a hamiltonian
v22v23-path p′2. We now see p1, p

′
2, p
′
3, and p′4 as paths in Γ and recall that v11 = v21 and

v31 = v41. Adding to p1 ∪ p′3 ∪ p′4 ∪ p′2 the edges v33v13, v12v32, v43v23, v22v42, we obtain a
hamiltonian path in Γ− v − w.

The treatment of pairs of adjacent vertices in G2, G3, and G4 is analogous. Finally,
we show that Γ− v13 − v33 is traceable. For k ∈ {1, 3}, as Gk − vk3 is hamiltonian, there
exists a hamiltonian vk1vk2-path p′′k in Gk − vk − vk3. Then p′′3 ∪ p′′1 ∪ p2 ∪ p4 together with
the edges v32v12, v23v43, and v42v22 form a hamiltonian path in Γ − v13 − v33. Dealing
with the removal of the pairs of adjacent vertices {v12, v32}, {v22, v42}, and {v23, v43} is
very similar. �

In the above proof we did not make use of the fact that Gi− vi− vij is hamiltonian for
any i, j, so the requirements on the graphs Gi could be slightly relaxed, at the expense of
a more cumbersome statement.

Originally, Thomassen [33] had applied this procedure to four copies of the Petersen
graph in order to construct a 34-vertex hypotraceable graph, shown in Fig. 8. No smaller
hypotraceable graph is known. It turns out that we can apply Proposition 7 to four copies
of the Petersen graph as well, so the graph given by Thomassen is also K2-traceable. No
smaller non-traceable K2-traceable graph is known.

Corollary 8. There exists a hypotraceable K2-traceable graph of order 34, see Fig. 8.
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Fig. 8: A hypotraceable graph due to Thomassen. It is K2-traceable.

5.2 Two families of 3-connected non-traceable K2-traceable graphs

We omit the proofs of Propositions 8 and 9—they are similar to what has been presented
above, as well as the proofs of the results of which they are variants. First, we note a vari-
ation of another result of Thomassen [34] (Thomassen’s result generalises an observation
of Horton [21]).

Proposition 8. For 1 ≤ i ≤ 5, let Gi be pairwise disjoint non-hamiltonian K2-hamiltonian
graphs containing adjacent cubic vertices xi, yi such that the neighbours of xi (yi) distinct
from yi (xi) are ai and bi (ci and di), and Gi− ai, Gi− bi, G− ci, Gi− di are hamiltonian.
The graph resulting from adding to

⋃
iGi − xi − yi the edges c1a2, c2a3, c3a4, c4a5, c5a1,

d1b2, d2b3, d3b4, d4b5, and d5b1, is 3-connected, non-traceable and K2-traceable.

Consider disjoint graphs G and H, each containing a k-valent vertex v and w, respec-
tively. We say that we replace v with G − w if in the disjoint union of H − v and G − w
we connect the vertices of NH(v) to the vertices of NG(w). We now present a variation of
a result of Wiener and the author [41]:

Proposition 9. Let G1, G2, G3 be pairwise disjoint non-hamiltonian K2-hamiltonian
graphs containing cubic vertices wi ∈ V (Gi) with neighbours wi1, wi2, wi3 such that for
every wij the graph Gi−wij is hamiltonian. Consider K4 and put V (K4) = {v1, v2, v3, v4}.
For all i ∈ {1, 2, 3}, replace vi with Gi−wi. Thus, a 3-connected non-traceable K2-traceable
graph containing a non-traceable vertex-deleted subgraph is obtained.

Corollary 9. There exist infinitely many non-traceable K2-traceable graphs in which the
intersection of all longest paths is empty, as well as infinitely many non-traceable K2-
traceable graphs in which the intersection of all longest paths is non-empty.

Proof. For the first statement, apply Proposition 8 to quintuples of graphs from an in-
finite family of cubic hypohamiltonian K2-hamiltonian graphs, e.g. the family P from
Section 2.1. We obtain an infinite family of non-traceable K2-traceable graphs, which by
a result of Thomassen [34] are in fact hypotraceable. Therefore, in each such graph the
intersection of all longest paths is empty. For the second statement, apply Proposition 9 to
triples of graphs from an infinite family of cubic hypohamiltonian K2-hamiltonian graphs.
The resulting graphs are non-traceable and K2-traceable, but contain both traceable and
non-traceable vertex-deleted subgraphs by a result from [41], so the intersection of their
longest paths is non-empty. �
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6 Notes

1. Our investigation naturally leads to the study of the properties of K3-hamiltonian
graphs. Already Grünbaum presented a planar cubic non-hamiltonian K3-hamiltonian
graph G1 in [18]. What Grünbaum was in fact interested in was the observation that
every vertex in the 124-vertex graph G1 is missed by a cycle of length 121, which coincides
with the circumference of G1. He obtains G1 by replacing in the planar and cubic graph
G0, see [18, Figure 1], suitable 40 of its 44 vertices by a triangle. Since none of the four
non-replaced vertices of G0 lie on a triangle, we can conclude that G1 is K3-hamiltonian.
With the advent of planar cubic hypohamiltonian graphs [36], infinitely many planar
cubic non-hamiltonian K3-hamiltonian became readily available, as replacing every vertex
of a member of the former family with a triangle yields a member of the latter family.
Thus, structurally, the relationship between K1- and K3-hamiltonian graphs seems much
stronger than with K2-hamiltonian graphs.

2. Relaxing (G) in a different direction, one might ask for n-vertex graphs in which every
pair of vertices is avoided by a longest cycle—when that cycle has length n − 2, i.e. the
graph’s circumference is n − 2, we arrive at a counterexample to (G). Grünbaum [18]
provided a cubic graph of order 90 in which every pair of vertices is avoided by a longest
cycle: insert a vertex-deleted Petersen graph into every vertex of a Petersen graph P . It
has circumference 72. Zamfirescu [44] gave such a graph of order 75 and circumference 63,
but it is not cubic: contract all “old” edges, i.e. edges which originally belonged to P , in
the aforementioned construction. It would be very interesting to decrease the difference
between order and circumference, in both the general and cubic case.

3. Another conjecture of Grünbaum [18] is that Γ(1, 2) contains no planar 3-connected
graph. The author is not aware of a published solution to this problem. Grünbaum’s
original conjecture did not mention the word “3-connected”, but in private communication
between him and Thomassen, the latter showed that Γ(1, k) contains infinitely many planar
graphs for every k ≥ 2 (see [18] for details) and, in a later paper, that Γ(1, 1) contains
infinitely many planar 3-connected graphs [34]. This result leads to a solution: consider
such a graph G and a cubic vertex therein (such a vertex always exists [35]). Let F be
the non-trivial N(v)-fragment of G. Connect the attachments of F to the attachments
of a copy of F , disjoint from F , by three edges such that the resulting graph is planar
and 3-connected. Thus we obtain infinitely many counterexamples to the conjecture that
Γ(1, 2) contains no planar 3-connected graph.

4. In the introduction we noted that for the problems of Grünbaum and Katona et al.
restricted to pairs of non-adjacent vertices, it is easy to give infinitely many solutions by
considering Kt + Kt+2. Every such graph has circumference 2 less than its order, and
satisfies that the removal of any pair of vertices at distance at least 2 yields a hamiltonian
graph. However, every member of this family has diameter 2, so the natural follow-up
question is whether we can show this result for larger diameters.

5. A continuation of this article is in preparation [15]. It will combine results from this
paper with new theoretical insights and computational tools in order to further study, for
n-vertex graphs, the interplay between K2-hamiltonicity and (n− 1)-cycles, in particular
with regards to planar graphs.
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