
On 3-polytopes with non-hamiltonian prisms

Daiki IKEGAMI∗, Shun-ichi MAEZAWA†,

and Carol T. ZAMFIRESCU‡

Abstract. Špacapan recently showed that there exist 3-polytopes
with non-hamiltonian prisms, disproving a conjecture of Rosenfeld and
Barnette. By adapting Špacapan’s approach we strengthen his result
in several directions. We prove that there exists an infinite family of
counterexamples to the Rosenfeld-Barnette conjecture, each member
of which has maximum degree 37, is of girth 4, and contains no odd-
length face with length less than k for a given odd integer k. We
also show that for any given 3-polytope H there is a counterexample
containing H as an induced subgraph. This yields an infinite family
of non-hamiltonian 4-polytopes in which the proportion of quartic
vertices tends to 1. However, Barnette’s conjecture stating that every
4-polytope in which all vertices are quartic is hamiltonian still stands.
Finally, we prove that the Grünbaum-Walther shortness coefficient of
the family of all prisms of 3-polytopes is at most 59/60.
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1 Introduction

This article concerns the study of vertex degrees and longest cycles in the Cartesian
product of the 1-skeleton of a 3-polytope with K2, i.e. its prism. We shall generally
use graph-theoretical notation but frame our results in polytopal terminology, since
many problems were originally formulated thusly. When we here speak of a d-polytope
(i.e. a d-dimensional polytope), we are always referring to its 1-skeleton. A d-polytope
is simple if each of its vertices is incident with d edges. We recall that 3-polytopes
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have been characterised by Steinitz [19] and coincide with planar 3-connected graphs,
and that by a theorem of Balinski, every d-polytope is d-connected [1]. For classical
references on graphs and polytopes we refer to Grünbaum’s works [5, 6], and for a more
recent contribution, including a good overview, see [14].

Rosenfeld and Barnette [17] showed that the Four Colour Theorem implies that
simple 3-polytopes have hamiltonian prisms, and Fleischner [4] gave a proof avoiding
the use of the Four Colour Theorem. Paulraja [13] strengthened this by showing that
the same conclusion holds even if planarity is not assumed, i.e. the prism over any
3-connected cubic graph is hamiltonian. Čada, Kaiser, Rosenfeld, and Ryjáček gave a
new, simplified proof of this result [3].

The conjecture that any 3-polytope is prism-hamiltonian, i.e. has a hamiltonian
prism, is generally attributed to the 1973 article [17] of Rosenfeld and Barnette, and
Špacapan [18] writes that Rosenfeld mentioned the conjecture during many of his talks.
It appears explicitly in [8, Conjecture 1]. In support of the conjecture, various classes
of 3-polytopes were shown to be prism-hamiltonian, see [18] for a recent summary. In
particular, in 2008 Biebighauser and Ellingham [2] proved that triangulations and bi-
partite 3-polytopes are prism-hamiltonian. However, in the general case, Špacapan [18]
recently showed that the conjecture does not hold.

On the other hand, the question whether all simple 4-polytopes are hamiltonian
remains open. This question is the title of Rosenfeld’s 1983 article [15]. Therein, he
constructs extensive families of non-hamiltonian 4-regular 4-connected graphs none of
which are the 1-skeleton of a 4-polytope. Already in 1970 Barnette formulated the
conjecture that the answer to this question is positive [6, p. 1145]. In stark contrast,
Mohar conjectures that for every integer d ≥ 3, there exists a simple d-polytope that is
not hamiltonian [11]. For d = 3 this was proved by Tutte [21], for d > 3 it is open. If
one drops the simplicity requirement, non-hamiltonian d-polytopes are easy to describe
for any d.

As in many questions related to hamiltonicity, vertex degrees play a crucial role.
In the next section we shall therefore adapt Špacapan’s solution in order to better
understand the structural properties of the counterexamples to the Rosenfeld-Barnette
conjecture. Concerning the combinatorial properties of polytopes, Kalai writes in [9]:
“it seems that overall, we are short of examples. The methods for coming up with
useful examples (or counterexamples for commonly believed conjectures) are even less
clear than the methods of proving.”—our contribution is very much driven by this
sentiment. We will address certain natural questions concerning vertex degrees and
short longest cycles in prisms of 3-polytopes. Concretely, we prove that there exists an
infinite family of counterexamples to the conjecture, each member having maximum
degree 37, girth 4, and no odd-length face with length less than k for a given odd integer
k, whereas the maximum degree in Špacapan’s infinite family grows with the graphs’
order, and many triangles are present. We also show that for any given 3-polytope H
there is a counterexample containing H as an induced subgraph, immediately yielding
an infinite family of non-hamiltonian 4-polytopes in which the proportion of quartic
vertices tends to 1. However, Barnette’s conjecture stating that simple 4-polytopes
are hamiltonian still stands. Finally, we prove that the Grünbaum-Walther shortness
coefficient of the family of all prisms of 3-polytopes is at most 59/60. This establishes
that there exist prisms of 3-polytopes in which every longest cycle misses a number of
vertices that is linear in the order of the prism.
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2 Results

All graphs in this paper are assumed to be connected. A graph is plane if it is planar
and embedded in the Euclidean plane. Let G be a graph and K2 the complete graph
on two vertices. Put G� := G�K2, and for a set of vertices W , set W� := W ×V (K2).
For W ⊂ V (G), we write G[W ] for the subgraph of G induced by W . For a vertex
v ∈ V (G), in G� the two copies of v will be denoted by v′ and v′′. For X, Y ⊂ V (G) we
call a path with one endpoint in X and one endpoint in Y an XY -path. When X = Y ,
we simply write X-path. Abusing notation, single-element sets will be denoted by the
element they contain. In this paper, all cuts are vertex-cuts, and a k-cut is a cut on
k vertices. We call a path (cycle) on k vertices a k-vertex-path (k-cycle). For a vertex
v we denote the set of vertices adjacent to v by N(v). Sets A,B ⊂ S partition S if
A ∩B = ∅ and A ∪B = S. We begin with a simple fact:

Lemma 1. Let b, x be the end-vertices of a 3-vertex-path P and Q a bipartite graph
disjoint from P . Let G be the graph obtained from P and Q by adding the two edges bc
and xy, where c, y are contained in different partite sets of Q. In G�, put B := {b′, b′′}
and X := {x′, x′′}. Then there exists no pair of non-empty BX-paths p, q such that
V (p) and V (q) partition V (G�).

Proof. Suppose that there exist non-empty BX-paths p, q such that V (p) and V (q)
partition V (G�). It is easy to see that one of p and q, say p, contains no vertex of Q�.
Moreover, we may assume that b′, x′′ ∈ V (p). We show that there is no b′′x′-path in

Q̂ := G�[V (Q�) ∪ {b′′, x′}] passing through all vertices in Q�. Since G[Q ∪ {b, x}] is a

bipartite graph, Q̂ is a bipartite graph as well. As c and y are contained in different
partite sets of Q, we can infer that b′′ and x′ are contained in the same partite set of
Q̂. Since Q� has partite sets of equal cardinality, the cardinality of the partite set of Q̂
containing b′′ and x′ is by 2 greater than the cardinality of its other partite set. Thus,
there is no b′′x′-path in Q̂ spanning Q�. �

Let Q be a bipartite 3-polytope and G be as introduced in Lemma 1. We define the
graph RH,Q as shown in Fig. 1, where for z being the common neighbour of b and x,
the graph induced by {b, x, z} ∪ V (Q) is isomorphic to G, and H either is an arbitrary
3-polytope, in which case the two edges between H and RH,Q−H are non-incident, or
the graph (∅, ∅), in which case these two edges are suppressed. Whenever the graph Q
does not change in an argument, we write RH instead of RH,Q. Lemma 1 and the fact
that X (as defined in Lemma 1) is a 2-cut in R�

H imply the next lemma.

H

b

x

Q

z

Fig. 1: The graph RH .
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Lemma 2. Let RH be the graph from Fig. 1 and b the vertex indicated in Fig. 1. Then
there exists no hamiltonian b′b′′-path in R�

H .

Let H be a 3-polytope. By combining four copies of RH we obtain the graph T
depicted in Fig. 2, where c is adjacent to a vertex in H (resp. Q) which is different
from the two vertices in H (resp. Q) adjacent to a vertex outside of H (resp. Q).

b d
c

H H

H H

Q

Q Q

Q

Fig. 2: The graph T .

Lemma 3. Consider the graph T as well as vertices b and d in T as shown in Fig. 2.
In T�, put B := {b′, b′′} and D := {d′, d′′}. Then there is no BD-path p in T� such
that p contains all vertices of T� −B −D.

Proof. Assume there exists such a path p. Referring to Fig. 2, since {c′, c′′} =: C is a
2-cut of T�, p must visit all vertices of the, with respect to C, left-hand side L of T�

before entering the right-hand side R (with the possible exception of c′ or c′′).
Let q be a BC-path in L such that q visits all vertices of L − B − C. We now

show that then V (C) ⊂ V (q). Assume q visits only one of c′, c′′. Then however either
the bottom half of L−C or the top half of L−C, both isomorphic to R�

H , contains a
hamiltonian b′b′′-path, contradicting Lemma 2.

Thus, we know that p, when entering R, must have already visited c′ and c′′. By
symmetry we can now assume that p enters the lower half of R, visits all of its vertices,
and exits it through a vertex of D. But p must end in D, so it contains as a sub-path
a hamiltonian d′d′′-path in the top half of R − C, which is isomorphic to R�

H . This
contradicts Lemma 2. �

Consider a 3-vertex-path P whose end-vertices are v, w and a bipartite 3-polytope
Q. Let R̂Q be a planar graph obtained from P and Q by adding two edges vx and wy
where x and y are contained in different partite sets of Q. Note that we can choose x
and y from V (Q) such that R̂Q is a planar graph. Consider the disjoint union of T and

two copies of R̂Q which we call C1 and C2. Let a, b be the end-vertices of the copy of
P in C1 and d, e be the end-vertices of the copy of P in C2. Identify b in T (see Fig. 2)
with b in C1 and identify d in the resulting graph with d in C2 in order to obtain the
graph U . We have depicted a planar embedding of U in Fig. 3. We introduce white
and square vertices as defined in Fig. 3 and its caption. Choose a vertex v1 (v2) from
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H H

H H

Q

Q Q

Q
Q

Q

Fig. 3: The graph U . Vertices shown as white discs will be called white and vertices
depicted as squares will be called square.

the boundary of the unbounded face of Q in C1 (C2) as a white vertex (square vertex)
such that v1 /∈ N(a) ∪N(b) and v2 /∈ N(d) ∪N(e).

Lemma 4. Consider U as defined above. In U�, put A := {a′, a′′} and E := {e′, e′′}.
Then, in U�,
(i) there is no AE-path spanning U� − A− E;
(ii) there are no two AE-paths whose vertices partition V (U�);
(iii) there is no A-path p and E-path q such that V (p) and V (q) partition V (U�); and
(iv) there is no A-path spanning U� − A− E and no E-path spanning U� − A− E.

Proof. (i) follows directly from Lemma 3, and (ii) from Lemma 1. Now assume that
the converse of (iii) is true. By Lemma 1, p cannot go beyond {b′, b′′}, and q cannot
go beyond {d′, d′′}, which means that c′ /∈ V (p) ∪ V (q), a contradiction. This includes
the case that either p or q is isomorphic to (∅, ∅). For (iv), we argue as for (iii). �

Consider nine pairwise disjoint copies of U , each embedded in the plane as shown
in Fig. 3, where for a vertex v of U its i-th copy will be denoted by vi, as well as two
additional vertices x and y disjoint from these copies of U . We identify vertex ei (in
the i-th copy of U) with vertex ai+1 (in the (i+ 1)-th copy of U) for all i ∈ {1, . . . , 8}
as well as e9 with a1. In each copy of U , assume H 6= ∅ and connect all white vertices
of every copy of U with x and all square vertices of every copy of U with y. Clearly,
this can be done so that the obtained graph G9 is a plane graph.

Lemma 5. G9 is 3-connected.

Proof. It is easy to see that G9 and G9 − {x, y} are 2-connected. Suppose that G9

contains a 2-cut S. Since G9 − {x, y} is 2-connected, x, y /∈ S.

We call a block of U which is not isomorphic to R̂Q an octagonal fragment. For
each i ∈ {1, . . . , 9}, Ui contains two octagonal fragments. In the rest of the proof, we
consider only the octagonal fragment Oi containing bi and ci. For any two vertices
u, v ∈ V (Oi) \ {bi, ci} with {u, v} 6= {bi, ci}, G9 − {x, y, u, v} is connected and there is
no 2-cut in Oi except for {bi, ci}. Thus, we obtain the following claim.
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Claim. For an octagonal fragment Oi in Ui, the following statements hold.

• For u, v ∈ V (Oi), if G9 − {x, y, u, v} is disconnected, then {u, v} = {bi, ci} and

• {bi, ci} is the unique 2-cut of Oi.

Suppose that every block of G9 − {x, y} − S is connected. Since every block of
G9 − {x, y} has both a vertex adjacent to x and a vertex adjacent to y, there exists
a block B of G9 − {x, y} such that B − S has no vertex adjacent to either x or y.
This implies that B is an octagonal fragment and S consists of a square vertex and
a white vertex contained in B. Then S ∩ {bi, ci} = ∅, which contradicts the Claim.
Hence, there exists a block B of G9 − {x, y} − S that is disconnected. Then S ⊆ B.
Suppose that B is an octagonal fragment. Then S = {bi, ci} by the Claim. Since
each component of B − S has a vertex adjacent to either x or y, the graph G9 − S is
connected, a contradiction. Hence B is isomorphic to R̂Q.

If each component of B − S has a vertex adjacent to either x or y, we can deduce
a contradiction as above. So there exists a component of B − S which has no vertex
adjacent to either x or y. This implies that {ai, bi, di, ei}∩S = ∅. Then for each vertex
z in B−S, there exists either a path connecting x and z in G9−S or a path connecting
y and z in G9 − S, but this implies that G9 − S is connected, a contradiction. �

As mentioned in the introduction, Špacapan [18] has shown that there exist in-
finitely many 3-polytopes whose prisms are not hamiltonian. However, in his con-
struction the maximum degree increases with the graph’s order. Motivated by this as
well as Barnette’s aforementioned conjecture, we present the following results, where
Vk(G) shall denote the set of all k-valent vertices present in a given graph G. We shall
make use of the so-called shortness coefficient ρ and shortness exponent σ, defined by
Grünbaum and Walther [7] as follows. For an infinite family G of graphs, let

ρ(G) := lim inf
circ(Gn)

|V (Gn)|
and σ(G) := lim inf

log circ(Gn)

log |V (Gn)|
,

with the limit inferior taken over all sequences of graphs Gn in G such that |V (Gn)| →
∞ as n → ∞. Here, circ(G) stands for the circumference of the graph G, i.e. the
length of a longest cycle in G. Already in the sixties Moon and Moser proved [12]
that there exist infinitely many n-vertex d-polytopes the longest paths of which have
length < 3dnlogd 2. Thus, if Pd is the family of all d-polytopes, for d ≥ 3 we have
σ(Pd) ≤ logd 2 < 1, so ρ(Pd) = 0. Their proof is based on the following observation:
let G be a d-polytope containing strictly more facets (i.e. (d− 1)-faces) than vertices.
For each of its facets, add a new vertex to G and connect it to every vertex of the
facet. It is easy to see that this can be done such that the resulting graph G′ is also
a d-polytope. We call a non-new vertex old. In G′, there is no edge between two new
vertices, and there can be many more new vertices than old vertices, hence the large
discrepancy between circumference and order.
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Let P�
3 denote the family of all prisms over 3-polytopes. For a graph G, the

maximum degree in G is denoted by ∆(G). We now present our results.

Theorem. (i) For any 3-polytope H there exists a 3-polytope G containing H as an
induced subgraph such that the prism over G is non-hamiltonian and has maximum
degree max{37,∆(H) + 1}. Thus, every simple 4-polytope obtained as the prism over
a simple 3-polytope, is contained in some non-hamiltonian 4-polytope.

(ii) For any odd integer k ≥ 3, there is an infinite family of 3-polytopes whose prisms
Π are non-hamiltonian, have maximum degree 37, are of girth 4, contain no odd-length
face with length less than k, and satisfy

lim
|V (Π)|→∞

|V4(Π)|/|V (Π)| = 1.

(iii) We have ρ(P�
3 ) ≤ 59

60
. In particular, there exist prisms of 3-polytopes in which

every longest cycle misses a number of vertices that is linear in the order of the prism.

Proof. Clearly, x and y attain the maximum degree among all vertices of G9 not
contained in a copy of H or Q, which is 36. Since we can choose a bipartite 3-polytope
Q with ∆(Q) ≤ 36 (for instance the prism over an even cycle), G�

9 has maximum
degree max{37,∆(H) + 1}. We now show that G�

9 is non-hamiltonian. Suppose that
G�

9 has a hamiltonian cycle h. Then the number of edges of h incident with a vertex in
x′, x′′, y′, y′′ is at most eight. Since G9−{x, y} contains nine copies of U , there exists an
i ∈ {1, . . . , 9} such that U�

i has no vertex adjacent to either x′, x′′, y′, or y′′ in h. Every
way in which h might traverse U�

i —depicted diagrammatically in Fig. 4—contradicts
Lemma 4. Hence G�

9 is non-hamiltonian.

a′

a′′

e′

e′′

Fig. 4: The eight essentially different ways in which h might span U�
i . Each diagram

in the top row contradicts Lemma 4 (i), while for the second row, the first diagram
contradicts Lemma 4 (ii), the second diagram Lemma 4 (iii), and the last two

diagrams contradict Lemma 4 (iv).

Next, we show that infinitely many graphs satisfying (ii) can be obtained from G9.
We choose the prism of the 2`-cycle, a simple bipartite 3-polytope, as H as well as Q.
With this choice, for `→∞, the graphs G9 satisfy the last property of (ii). We show
that G9 contains no odd-length face with length less than k with this choice of H and
Q. Since the prism of the 2`-cycle has faces of length four and a face of length 2`, we
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can ignore the faces in H and Q. The faces not containing any edge of the outer face
of H and Q have even length. For each copy of H (resp. Q) in G9, there are three
vertices adjacent to a vertex in V (G9) \ (V (H)∪ V (Q)). When applying Lemma 1, we
need to choose the two vertices of Q adjacent to V (G9) \ (V (Q) ∪ {c}) carefully: we
select the three vertices from H (resp. Q) so that between any two among them, the
distance in the outer face of H (resp. Q) is large enough.

For part (iii), we argue as follows. We consider a graph constructed similarly to
G9, but instead of nine copies we consider ` copies, and instead of U we use the graph
Û shown in Fig 5. Denote the unbounded face of Û by F . We call every vertex of F
strictly below (strictly above) the dotted line in Fig. 5 a(n) lower vertex (upper vertex ).

Connect all 2-valent upper vertices of every copy of Û with x and all 2-valent lower
vertices of every copy of Û with y.

Fig. 5: The graph Û .

Denote this graph by Z`. This graph is clearly planar, and the proof of its 3-
connectedness is very similar to that of Lemma 5 and therefore omitted. We now
consider the situation when ` → ∞. Let c be a longest cycle in Z�

` . Arguing as in

the first paragraph of this proof, there exist at least ` − 8 → ∞ copies of Û� in Z�
`

that have no vertex adjacent to either x′, x′′, y′, y′′ in c. With arguments very similar
to what has already been discussed, one can show that in each such copy the cycle c
misses at least one vertex, so

ρ(P�
3 ) ≤ lim

`→∞

circ(Z�
` )

|V (Z�
` )|
≤ lim

`→∞

60 · 8 + 59(`− 8) + 4

60`+ 4
=

59

60
.

�

3 Discussion

1. Determine (or improve the bounds) for

ρ(P�
3 ) and ∆0 := min

Π∈P�
3 ∩N

∆(Π),

where N is the family of all non-hamiltonian graphs. By Paulraja’s aforementioned
result and our theorem we have 5 ≤ ∆0 ≤ 37. Perhaps ρ(P�

3 ) = 0 is true. If so, an
estimation of σ(P�

3 ) would be interesting.
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2. We have described here, like Špacapan, an infinite family of non-hamiltonian 4-
polytopes. 4-polytopes are by Balinski’s theorem necessarily 4-connected. By a theo-
rem of Tutte, planar 4-connected graphs are hamiltonian, so their prisms are certainly
hamiltonian. But are there non-hamiltonian 5-connected 4-polytopes? Mohar [11]
asks: Is there an integer k such that every k-connected 4-polytopal graph is hamilto-
nian? (Of course, the question makes sense for higher-dimensional polytopes as well.)
In contrast to 3-polytopes, 4-polytopes with arbitrarily large connectivity exist [5], for
instance the family of all complete graphs of order at least 5.

3. As Malkevitch recalls in [10], Barnette showed that every 3-polytope has a spanning
tree of maximum degree 3 but for 4-polytopes there is no uniform value of k which will
guarantee that a 4-polytope has a spanning tree of maximum degree k. For prisms over
3-polytopes however it follows immediately from Barnette’s result that these always
contain a spanning tree of maximum degree 3. (Improving this to maximum degree 2
is impossible by results from [18].)

4. One can describe non-hamiltonian 4-polytopes via toughness-based arguments,
and Špacapan [18] has shown that even the prisms over 3-polytopes may be non-
hamiltonian. Our question now is whether there is a 3-polytope G whose prism is non-
hamiltonian, yet has many hamiltonian vertex-deleted subgraphs. It is not difficult to
construct non-hamiltonian 4-polytopes of order n with n+1

2
hamiltonian vertex-deleted

subgraphs, but it is unclear how to move passed this threshold. This question is mo-
tivated by a paper of Thomassen, who asked in 1978 whether 4-connected hypohamil-
tonian graphs—i.e. non-hamiltonian graphs in which every vertex-deleted subgraph is
hamiltonian—exist [20].

5. Rosenfeld discusses in [16] a series of interesting problems on the subject, many of
which remain open.
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