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Abstract. A graph G is perihamiltonian if G itself is non-
hamiltonian, yet every edge-contracted subgraph of G is hamiltonian.
These graphs form a superclass of the hypohamiltonian graphs. By
applying a recent result of Wiener on path-critical graphs, we prove
the existence of infinitely many perihamiltonian graphs of connectiv-
ity k for any k ≥ 2. We also show that every planar perihamiltonian
graph of connectivity k contains a vertex of degree k. This strengthens
a theorem of Thomassen, and entails that if in a polyhedral graph of
minimum degree at least 4 the set of vertices whose removal yields a
non-hamiltonian graph is independent, the graph itself must be hamil-
tonian. Finally, while we here prove that there are infinitely many
polyhedral perihamiltonian graphs containing no adjacent cubic ver-
tices, whether an analogous result holds for the hypohamiltonian case
remains open.
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1 Introduction

A graph is hypohamiltonian if it does not contain a hamiltonian cycle, but all of
its vertex-deleted subgraphs do. For a survey, see Holton and Sheehan’s [9], while
for recent progress on the planar case we refer to [12]. In 1978, Thomassen [19]
proved that a hypohamiltonian graph that is planar will always contain vertex of
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degree 3, which is equivalent to the statement that if each vertex-deleted subgraph
of a planar graph G in which every vertex has degree at least 4 is hamiltonian, then
G is hamiltonian, and constitutes a generalisation of Tutte’s celebrated result that
planar 4-connected graphs are hamiltonian [21]. The aforementioned theorem of
Thomassen was recently strengthened in several directions by the last author [28],
among which is the result that a planar hypohamiltonian graph must contain at
least four vertices of degree 3. However, the following intriguing question of the first
two authors remains open: Do planar hypohamiltonian graphs necessarily contain
adjacent vertices of degree 3?

Motivated by this problem, we introduce a class of graphs defined as follows. A
graph G is perihamiltonian if G itself is non-hamiltonian, yet every edge-contracted
subgraph of G is hamiltonian. We shall make frequent and tacit use of the fact that
a non-hamiltonian graph G is perihamiltonian if and only if for every edge vw in G,
the vertex-deleted subgraph G− v or G− w (possibly both) is hamiltonian. Thus,
every hypohamiltonian graph is perihamiltonian. Clearly, perihamiltonian graphs
are traceable (i.e. contain a hamiltonian path), but perhaps surprisingly not every
vertex-deleted subgraph of a perihamiltonian graph need be traceable. Therefore,
perihamiltonian graphs are not a subclass of the so-called platypuses [27], non-
hamiltonian graphs in which every vertex-deleted subgraph is traceable: take for
instance Herschel’s graph, which is perihamiltonian but not a platypus. A non-
traceable graph in which each vertex-deleted subgraph is traceable is called hypo-
traceable. The existence of such graphs [20] shows that there are non-perihamiltonian
platypuses.

This article is organised as follows. We close this introductory section with
further definitions and basic structural properties of perihamiltonian graphs. In
Sections 2 and 3 we present results on perihamiltonian graphs of connectivity 2
and connectivity 3, respectively, followed by a fourth section on higher connectivity.
Special attention is given to the planar case. In Section 5 we describe our computa-
tional results. The paper ends with Section 6, in which we present open problems
on perihamiltonian graphs.

For a possibly disconnected graph G, we denote by V (G) (E(G); ω(G)) its vertex
set (edge set; number of connected components). Let nowG be a non-complete graph
of connectivity κ. Then G contains induced subgraphs H1, H2, both non-empty, with
the property that G = H1∪H2 and V (H1)∩V (H2) = X, with X containing exactly
κ vertices. The subgraph H1 (and H2) shall be called a κ-fragment of G. (If κ
is clear from the context or irrelevant for the argument, we will suppress it and
simply write fragment.) Moreover, X is the set of attachments of H1. We say that
a κ-fragment F is trivial if |V (F )| = κ + 1. A cut X (in this paper, all cuts are
vertex-cuts) of cardinality κ will be called a κ-cut. The set of attachments of a
fragment that is trivial forms a cut which we call trivial. A path with end-vertex
v is a v-path, and a v-path with end-vertex w 6= v is a vw-path. For a graph G
we denote by G its complement, with Vk(G) its set of vertices of degree k (when
a vertex v has degree k, we say that v is k-valent, and we will sometimes shorten
this to deg(v) = k), and for an edge e in G we write G/e for the graph obtained
when contracting e—that is, removing e, identifying its end-vertices, and preserving
exactly one edge of any multi-edge formed by this identification. For a graph G,
we denote by δ(G) its minimum degree. Planar 3-connected graphs will be called
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polyhedral.
Let G be a 2-connected graph in which a longest cycle has length |V (G)|−1. Let

the set exc(G) in G be defined as the set of all vertices w of G satisfying the property
that G−w contains no hamiltonian cycle. We emphasise that given this definition,
deleting any vertex from V (G) \ exc(G) = nexc(G) will result in a hamiltonian
graph, and that nexc(G) is non-empty. Following [26], we shall consider G to be
|exc(G)|-hypohamiltonian. Furthermore, a vertex in exc(G) is exceptional, and a
vertex in nexc(G) is non-exceptional. Throughout this article, figures will depict
non-exceptional vertices as black and exceptional vertices as white. Denote the
family of all k-hypohamiltonian graphs byHk. A graph fromH0 is hypohamiltonian,
and members of H1 are called almost hypohamiltonian.⋃

k≥0Hk is a disjoint union and constitutes the family of all 2-connected graphs
G of circumference |V (G)|−1. Every perihamiltonian graph G is k-hypohamiltonian
for an appropriate k, and the k exceptional vertices in G form an independent set.
In particular, every almost hypohamiltonian graph is perihamiltonian.

The maximum size of an independent set of a graph G is denoted by α(G).
Observe that the removal of a non-exceptional vertex (of which there always exists
at least one) from an n-vertex perihamiltonian graph yields an (n−1)-cycle in which
at most half the vertices are exceptional. Thus, we have:

Lemma 1. Let G be a k-hypohamiltonian graph. G is perihamiltonian if and only if
exc(G) is an independent set. In particular, for a perihamiltonian graph G we have

|exc(G)| ≤ min

{
α(G),

|V (G)| − 1

2

}
.

Note that a simple argument gives that in a perihamiltonian graph the indepen-
dence number is always bounded from above by (|V (G)| + 1)/2. We shall see in
the next proposition that every bipartite perihamiltonian graph G is extremal in
the sense that it satisfies |exc(G)| = (|V (G)| − 1)/2. A graph G is homogeneously
traceable if for every vertex v in G there is a hamiltonian v-path of G. For k ≥ 2, a
subdivided wheel shall be the graph

({vi, xi, vk}k−1i=0 , {vivk, vixi, xivi+1}k−1i=0 ),

indices mod k, see Fig. 1 for k = 4.

Figure 1: The subdivided wheel on 9 vertices, a planar bipartite perihamiltonian
graph.
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Proposition 1. Let G be a perihamiltonian graph. Then the following hold.

(i) G contains for every non-exceptional vertex x a hamiltonian x-path. In par-
ticular, G is traceable. However, there exist infinitely many perihamiltonian
graphs which are not homogeneously traceable.

(ii) If G contains a triangle T , then every vertex in T has degree at least 4.

(iii) If G has a bipartition (A,B) with |B| ≥ |A|, then A = exc(G), B = nexc(G),
and |B| − |A| = 1. Furthermore, for every ` ≥ 2 the complete bipartite graph
K`,`+1 is perihamiltonian, and K2,3 is the smallest perihamiltonian graph.

Proof. (i) Let y be a neighbour of x, h a hamiltonian cycle in G − x, and z a
neighbour of y on h. Then (h − yz) + yx yields the desired path. For the second
statement, consider subdivided wheels—that they are indeed perihamiltonian will
be shown in the proof of Theorem 1.

(ii) G is 2-connected, so δ(G) ≥ 2. Put T = uvw and assume deg(v) = 2. Then
δ(G/uw) = 1, so G/uw cannot be hamiltonian. Now suppose deg(v) = 3 and denote
the third neighbour of v by x. Then the degree of v in G/uw is 2, so a hamiltonian
cycle h in G/uw must visit the edges xv and vy, where y is the vertex obtained when
merging u and w. However, it is now easy to modify h into a hamiltonian cycle in
G, a contradiction.

(iii) Assume |B| ≥ |A| + 2 or |B| = |A|. Every edge xy ∈ E(G) satisfies x ∈ A
and y ∈ B. Since neither G − x nor G − y is a balanced bipartite graph, neither
G− x nor G− y is hamiltonian, so G cannot be perihamiltonian by Lemma 1. We
have shown that |B|− |A| = 1. For every x ∈ A, the graph G−x has an unbalanced
bipartition, so G − x cannot be hamiltonian, whence x ∈ exc(G). It follows that
A ⊂ exc(G). By Lemma 1, no two exceptional vertices are adjacent, so exc(G) = A.
Every neighbour of an exceptional vertex must be non-exceptional, so nexc(G) = B.

If G = K`,`+1, then it has a bipartition (A,B) with ` = |B| = |A|+ 1. Consider
an arbitrary vertex y ∈ B. Then G − y = K`,` is hamiltonian. It suffices to note
that K`,`+1 is non-hamiltonian, and we obtain that G is perihamiltonian. It is easy
to verify that there is no smaller perihamiltonian graph than K2,3.

Collier and Schmeichel [6] showed that in a hypohamiltonian graph, every vertex
lying on a triangle has degree at least 4. Goedgebeur and the last author [8] proved
that this holds for almost hypohamiltonian graphs, as well. Proposition 1 (ii) gen-
eralises both of these results. It is worth noting that hypohamiltonian (and thus
perihamiltonian) graphs of girth 3 do exist, as proven by Thomassen [17]. In fact,
hypohamiltonian graphs of every girth between 3 and 7 are known, an example of
girth 7 being Coxeter’s graph. We do not know whether hypohamiltonian graphs of
larger girth exist, and even in the superclass of perihamiltonian graphs this is open.

Although hypohamiltonian graphs are necessarily 3-connected, the superclass
of perihamiltonian graphs also contains graphs of connectivity 2, which we now
investigate.
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2 Connectivity 2

Lemma 2. In a perihamiltonian graph G, every 2-valent vertex is non-exceptional,
while every neighbour of a 2-valent vertex is exceptional, and in particular non-2-
valent. Thus, every exceptional vertex in G has degree at least 3 and G does not
contain adjacent 2-valent vertices. Furthermore, unless G = K2,3, a vertex in G has
at most two 2-valent neighbours.

Proof. Consider a 2-valent vertex v in G and let w be a neighbour of v. Then G−w
is non-hamiltonian, and thus w is exceptional. Hence v must be non-exceptional by
Lemma 1.

Assume there is a vertex x in G with at least four 2-valent neighbours. Each of
these is non-exceptional, and all of their neighbours, including x, are exceptional.
Consider one such 2-valent neighbour y and remove it. We ought to obtain a hamil-
tonian cycle in G−y, but this graph contains a vertex (namely x) with at least three
2-valent neighbours, so it cannot be hamiltonian. Thus, G − y is non-hamiltonian,
so y is exceptional. As x is exceptional as well, G is non-perihamiltonian, a con-
tradiction. Now consider G to be a perihamiltonian graph containing a vertex w
with exactly three 2-valent neighbours. As before, w is exceptional, its 2-valent
neighbours non-exceptional, and all of their neighbours exceptional. We can argue
as above and obtain that w must be cubic. First consider the case that the vertices
at distance 2 from w are pairwise distinct. In this graph, no additional (i.e. other
than the three 2-valent vertices surrounding w) non-exceptional vertices may exist,
as the removal of such a vertex would leave a graph with a vertex surrounded by
more than two 2-valent vertices, so it cannot be hamiltonian. Any exceptional ver-
tex may only neighbour a non-exceptional vertex, but these are 2-valent, so every
vertex at distance 2 from w has degree 1 in G, which gives a contradiction. In a very
similar fashion we can show that if exactly two of the vertices at distance 2 from w
coincide, we also obtain a contradiction. Finally, if all three vertices at distance 2
from w are identical we obtain K2,3, which is in fact perihamiltonian and the only
such graph containing a vertex which has more than two 2-valent neighbours.

Proposition 2. If X = {x, y} is a 2-cut of a perihamiltonian graph G, then xy
is not an edge of G. Furthermore, we have ω(G − X) = 3 iff G = K2,3 and
ω(G − X) = 2 else. Lastly, every 2-cut in a perihamiltonian graph is trivial, so
every perihamiltonian graph of connectivity 2 contains a 2-valent vertex.

Proof. The first statement follows from the fact that any vertex contained in a 2-cut
of G is exceptional, but such vertices cannot be adjacent in a perihamiltonian graph.
Alternatively, κ(G/xy) = 1, so G/xy cannot be hamiltonian.

Assume there exists a 2-cut X such that ω(G − X) ≥ 4. Then for any edge
e ∈ E(G), we have that ω(G/e−X) ≥ 3. However, this is a contradiction, since G/e
ought to be hamiltonian. Now assume that X is a 2-cut of G such that ω(G−X) = 3
and that not all 2-fragments F, F ′, F ′′ with attachments X are trivial. Again, in the
non-trivial 2-fragment we can contract an edge and obtain a non-hamiltonian graph.
So F, F ′, F ′′ all must be P3 (the path on three vertices), i.e. ω(G − X) = 3 if and
only if G = K2,3 as advertised.

Finally, let G be a perihamiltonian graph containing a non-trivial 2-cut X =
{x, y}. Let F, F ′ be 2-fragments of G with attachments X. Contracting an edge in
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F we obtain a hamiltonian xy-path in F ′, and analogously we obtain a hamiltonian
xy-path in F . Putting these paths together, we obtain a hamiltonian cycle in G, a
contradiction.

We have proven that if a perihamiltonian graph has connectivity 2, then it con-
tains at least one vertex of degree 2, i.e. it has minimum degree 2. How many
vertices of degree 2 may it contain? This is the question we now address.

First, observe that if we drop the connectivity 2 constraint, there may be no
vertices of degree 2 at all, as exemplified by K3,4 or any hypohamiltonian graph. We
recall that for a graph G, we denote by V2(G) the set of all 2-valent vertices of G.

Theorem 1. For a perihamiltonian graph G 6= K2,3 of order n, we have that
|V2(G)| ≤ (n − 1)/2, and G attains this bound iff G is a subdivided wheel. Fur-
thermore, if G is a bipartite perihamiltonian graph, e.g. a subdivided wheel, then for
any e ∈ E(G) such that G+ e is bipartite, the graph G+ e is perihamiltonian.

Proof. By Lemma 2, G does not contain adjacent 2-valent vertices and no vertex in
G may have more than two 2-valent neighbours, so |V2(G)| ≤ n/2. Assume there
exists a perihamiltonian graph G′ with |V2(G′)| = |V (G′)|/2. Then G′[V2(G

′)] is a
2-factor consisting of at least two cycles, each made up of alternating exceptional
and non-exceptional (2-valent) vertices. But then half of the vertices in G′ must be
exceptional, contradicting Lemma 1.

Let G be a subdivided wheel of order n. We now show that G is periham-
iltonian. G[V2(G)] is an (n − 1)-cycle, so the (unique) vertex v, where {v} =
V (G) \ V (G[V2(G)]), is non-exceptional. G has a bipartition

(A = V2(G) ∪̇ {v}, B = V (G) \ A),

where |A| = |B| + 1, so G is non-hamiltonian. By Lemma 2, every neighbour of a
vertex of degree 2 is exceptional. It is easy to see that every 2-valent vertex in G
is avoided by an (n − 1)-cycle and thus, is non-exceptional. As B = exc(G) is an
independent set, G is perihamiltonian.

Now let us show that there is no perihamiltonian graph G of order n with
|V2(G)| = (n− 1)/2 = k other than the subdivided wheel. The graph G has exactly
k + 1 vertices of degree at least 3, which we call white. All 2-valent vertices in G,
which we call black, are non-exceptional. By Lemma 2 no two black vertices in G
are adjacent.

We now study the (possibly disconnected) graph H, which is defined as G from
which we have removed all edges between white vertices. Assume among the com-
ponents of H is a cycle C and a non-trivial (i.e. 6= K1) component C ′. The cycle
C must be of even length, and have alternating black and white vertices. There
must be at least one black vertex v ∈ V (C ′) (in particular, v lies outside of C), and
since black vertices are non-exceptional, G − v is hamiltonian. But since C ′ − v is
non-empty and every second vertex of C is 2-valent, we have a contradiction. Two
cases remain:

Case 1. H is a path v1 . . . vn. Necessarily, H consists of alternating black and white
vertices, and has white end-vertices. As v2 is black, it is non-exceptional, so G− v2
has a hamiltonian cycle h. This cycle must contain the path v3 . . . vn, as well as the
edges v1v3 and v1vn. But then G is hamiltonian—a contradiction.
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Case 2. H consists of two disjoint components, namely an (n− 1)-cycle C and K1.
The cycle C consists of alternating black and white vertices, so the (unique) vertex
v in H − C must be white. The white vertices on C have degree at least 3, so each
such vertex must have at least one additional incident edge (in G), which is not yet
present in H. Furthermore, each such vertex is exceptional, so they are pairwise
non-adjacent. Thus, they must all be adjacent to v.

The only possible graph obtained in this manner is the subdivided wheel.

Let G be a non-complete bipartite perihamiltonian graph and e ∈ E(G) such
that G+ e is bipartite. We now show that G+ e is perihamiltonian. G+ e is non-
hamiltonian since the unbalanced bipartition guaranteeing the non-hamiltonicity of
G persists in G + e. The same argument yields that no exceptional vertex in G
becomes non-exceptional through the addition of the edge e. Clearly, every vertex
which was non-exceptional in G is non-exceptional in G+ e.

Starting from a subdivided wheel and adding edges one-by-one as indicated in
Theorem 1, we obtain:

Corollary 1. For every odd n > 5 and every k ∈ {0, . . . , (n− 1)/2}, there exists a
perihamiltonian graph of order n having exactly k 2-valent vertices.

Corollary 2. The number of bipartite n-vertex perihamiltonian graphs is Ω(n2).

Theorem 2. For all n ≥ 5 except for n ∈ {6, 8, 10} there is a planar perihamiltonian
graph of order n. Moreover, there is no perihamiltonian graph of order ≤ 4, 6 or 8,
while on 10 vertices there are exactly two such graphs, namely the Petersen graph P
and P minus an edge.

Proof. For odd n ≥ 5 consider the subdivided wheel on n vertices. For n = 5 this
is K2,3, which turns out to be the only perihamiltonian graph of order 5 (and it is
planar).

For even n ≥ 10, we first note that there are exactly two perihamiltonian graphs
of order 10: the Petersen graph, and the Petersen graph minus an edge. Both of
these graphs are non-planar. Consider the (2k − 1)-gonal prism

Π2k−1 = ({xi, x′i}2k−2i=0 , {xixi+1, x
′
ix
′
i+1, xix

′
i}2k−2i=0 ),

addition mod 2k − 1.
In the remainder of the proof, let k ≥ 3. For n = 4k let H4k be the graph

resulting from Π2k−1 by subdividing the edges x1x
′
1 and x3x

′
3 by new vertices x′′1 and

x′′3, respectively, see the left-hand side of Fig. 2 for k = 3. H4k is of order 4k and
the straightforward proof that it is perihamiltonian is left to the reader.

For n = 4k + 2 with k ≥ 3 let H4k+2 be the graph resulting from Π2k−1 by sub-
dividing the edges x′0x

′
1, x
′
1x
′
2, and x3x

′
3 by new vertices x′′0, x

′′
2, and x′′3, respectively,

and by connecting x′′0 and x′′2 by the path x′′0x
′′
1x
′′
2. See the right-hand side of Fig. 2

for an illustration of the case k = 3. H4k+2 is of order 4k+ 2 and, as above, the fact
that it is perihamiltonian is not difficult to verify and therefore omitted here.

We used a computational approach to check that the theorem’s second statement
holds. The details are described in Section 5.
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Figure 2: The graphs H12 and H14 from the proof of Theorem 2, which are planar
perihamiltonian graphs of order 12 and 14, respectively.

3 Connectivity 3

Lemma 3. Let G be a perihamiltonian graph of connectivity 3, and let X be a 3-cut
in G. If X contains a non-exceptional vertex v, then ω(G−X) = 2. Furthermore,
in general, no two non-exceptional vertices of X are adjacent. In particular, G[X] 6=
K3.

Proof. Put X = {x, y, z}. Assume that ω(G −X) ≥ 3. Since v is non-exceptional
we have that G− v is hamiltonian. But then G− v has a 2-cut X ′ = X \ {v} such
that ω(G−X ′) ≥ 3, a contradiction.

Suppose x and y are adjacent and non-exceptional in G and let F and F ′ be the
3-fragments with attachments X. Then F contains a hamiltonian yz-path and F ′

contains a hamiltonian xz-path. But these paths together with the edge xy form a
hamiltonian cycle in G, a contradiction. Now assume G[X] = K3, so xy, yz, zx ∈
E(G). By Lemma 1, exc(G) is an independent set, so at most one of x, y, z, say y,
lies in exc(G). Thus x and z are non-exceptional, and we are led to a contradiction
as above.

The first result of Lemma 3 is best possible in the sense that if all vertices in a
3-cut of a perihamiltonian graph are allowed to be exceptional, then the removal of
this 3-cut can yield more than two components: consider K3,4.

We now discuss Thomassen’s gluing procedure for 3-fragments of hypohamilto-
nian graphs [19] and an extension thereof. Let F, F ′ be 3-fragments of (not neces-
sarily planar) graphs of connectivity 3, and let F have attachments x1, x2, x3 and
F ′ have attachments x′1, x

′
2, x
′
3. Identifying xi with x′i for all i, we obtain the graph

(F, {x1, x2, x3})
... (F ′, {x′1, x′2, x′3}). When the vertices that are being identified (al-

ways using a bijection) are clear from context, we simply write F
...F ′. Thomassen

proved that if F and F ′ are 3-fragments of hypohamiltonian graphs, not both trivial,
then F

...F ′ is hypohamiltonian [19]. A generalisation of this statement can be found
in [28]. We now give a perihamiltonian version of this result:
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Theorem 3. Let G1 and G2 be disjoint 3-connected perihamiltonian graphs and
i ∈ {1, 2}. Furthermore, let there be a 3-fragment Fi in Gi with attachments Xi

such that either exc(Gi) ∩ Xi = ∅, or exc(Gi) ∩ Xi = {wi} and E(Gi[Xi]) 6= ∅. In

either case, Γ = (F1, X1)
... (F2, X2) is perihamiltonian, where in the latter case w1 is

identified with w2. If not both F1 and F2 are trivial, then Γ is 3-connected, and if
G1 and G2 are planar, then so is Γ.

Proof. Consider first the case |exc(Gi)∩Xi| = 0. As in the proof of [28, Lemma 2] one
deduces that, seeing F1 and F2 as subgraphs of Γ, we have exc(Γ) = exc(F1)∪exc(F2)
and exc(F1)∩exc(F2) = ∅. Since G1 and G2 are perihamiltonian, no two exceptional
vertices in F1 and F2 are adjacent. Thus exc(Γ) forms an independent set in Γ, so
Γ is perihamiltonian.

Now assume exc(Gi) ∩ Xi = {wi} and E(Gi[Xi]) 6= ∅. Although the following
reasoning to a large extent mimics the proof of [29, Lemma 4], certain arguments
differ, and these we explain in detail below.

Let Xi = {xi1, wi, xi2}. By Lemma 3, ω(Gi − Xi) = 2. In Gi, consider the
3-fragment Ji 6= Fi with attachments Xi. We shall denote by xj ∈ V (Γ), j ∈ {1, 2},
the vertex one obtains by identifying x1j with x2j, and w the vertex obtained by
identifying w1 and w2.

Claim. There is no hamiltonian xi1xi2-path in Fi − wi.

Proof of the Claim. Assume there is such a path p. As E(Gi[Xi]) 6= ∅, due to
Lemma 3, x1w or x2w lie in E(Γ), say the former. Since xi1 is non-exceptional in
Gi, there exists a hamiltonian path p′ in Ji−xi1 with end-vertices wi, xi2. p∪p′+x1w
is a hamiltonian cycle in Gi, a contradiction.

Due to the claim, Γ−w cannot be hamiltonian. Assume Γ contains a hamiltonian
cycle h. Without loss of generality let F1 ∩ h = p be connected. Since x1 and x2
are non-exceptional, the end-vertices of p must be x1 and x2 (otherwise we obtain a
contradiction with the non-hamiltonicity of G1). Then (F2−w)∩h is a hamiltonian
x21x22-path, contradicting the claim.

As the graph Gi − xij is hamiltonian, we have a hamiltonian xikwi-path pij in
Fi − xij, where k 6= j, for all i, j. Then p1i ∪ p2i implies that x1 and x2 are non-
exceptional in Γ. The remainder of the proof can be dealt with exactly as in the
proof of [29, Lemma 4] (choosing instead of an arbitrary vertex a non-exceptional
one), so it is omitted.

We have proven that no non-exceptional vertex of F1 or F2 is exceptional in Γ.
This completes the proof.

Theorem 3 is false without requiring “E(Gi[Xi]) 6= ∅”: in [8] an almost hypo-
hamiltonian graph is given (reproduced here in Fig. 3) with exceptional vertex y.
Now consider two copies of the 3-fragment with attachments {x, y, z} (these form
a non-trivial cut) which has ten vertices. By identifying, using a bijection, the re-
spective attachments of these two fragments, we get a graph G containing a vertex
y′ of degree 2 such that G − y′ is non-hamiltonian (this is easily inferred from the
non-hamiltonicity of the Petersen graph). Since y′ is 2-valent, the removal of one of
its neighbours also yields a non-hamiltonian graph, so G cannot be perihamiltonian
by Lemma 1.
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Figure 3: An almost hypohamiltonian graph; its exceptional vertex is y.

In Theorem 3, F1 or F2 (possibly both) may be trivial: if both are trivial, we
obtain K2,3, which is perihamiltonian, and if without loss of generality F1 is trivial,

we simply have to consider F2
...F1 = F2

...K1,3, i.e. add a new vertex w to F2 together
with the three edges between w and the attachments of F2.

We also remark that every perihamiltonian graph containing a cubic exceptional
vertex w contains at least one non-trivial 3-fragment satisfying above conditions,
namely the non-trivial one with attachments N(w).

If all vertices in the 3-cuts we glue are exceptional, gluing may fail to produce
a perihamiltonian graph: take K3,4 and x a vertex in the bigger partition. Then
K3,4 − x is a 3-fragment of a perihamiltonian graph. Glue two of these and we get
K3,6, a non-perihamiltonian graph. Even restricting ourselves to the polyhedral case,
gluing may fail to yield a perihamiltonian graph: consider the graph shown in Fig. 5
and remove the vertex v2. We obtain a 3-fragment F . Gluing F with a copy thereof
can be done such that the resulting graph is bipartite and polyhedral, with bipartite
sets of order 30 and 27, which by Proposition 1 (iii) cannot be perihamiltonian.

Thomassen [20] used the following operation to show that there exist infinitely
many planar cubic hypohamiltonian graphs, thereby solving a problem of Chvátal.
Consider a graph G to contain a 4-cycle C = v1v2v3v4. Then Th(GC) shall be the
graph we obtain by removing the edges v1v2 and v3v4 from G, adding a 4-cycle
v′1v
′
2v
′
3v
′
4 disjoint from G, as well as the edges viv

′
i, 1 ≤ i ≤ 4. Whenever we use the

notation Th(GC) without giving C explicitly (i.e. in the form v1v2v3v4), then our
statement concerns any one of the two graphs resulting from the application of Th to
G and a cycle C therein. The operation Th preserves planarity, 3-connectedness, and
3-regularity. We shall also make use of the operation Cu(GC) = Th(GC)+v1v2+v3v4.
The following result is essentially due to Thomassen, who gives it (without proof)
in [20]. A detailed proof for the planar case can be found in [25].

Proposition 3 (Thomassen [20]). If a graph G is hypohamiltonian and contains a
4-cycle C whose vertices are cubic, then Th(GC) is hypohamiltonian, as well.

We now prove a perihamiltonian analogue:

10



Lemma 4. Let G be a perihamiltonian graph that contains a 4-cycle C = v1v2v3v4.

(i) If v1 is exceptional and has degree at most 3, then Cu(GC) is perihamiltonian.

(ii) If v1 is non-exceptional and the degree of v3 is at most 3, then Th(GC) is
perihamiltonian.

(iii) If v1 and v3 are exceptional vertices, while at least one of v2 and v4 has degree
at most 3, then Cu(GC) is perihamiltonian.

Proof. (i) It is easily verified that if Cu(GC) is hamiltonian, then any hamiltonian
cycle in Cu(GC) can be translated to a hamiltonian cycle in G by replacing the parts
visiting v′1, v

′
2, v
′
3, v
′
4 by edges of C. Thus, Cu(GC) is non-hamiltonian. We consider

G to be a subgraph of Cu(GC).
First we will show that each non-exceptional vertex v in V (G) \ V (C) remains

non-exceptional in Cu(GC). Let h be a hamiltonian cycle in G−v. Since v1 is cubic,
we have that at least one edge of v1v2 or v1v4 is contained in h. In either case we can
replace that edge by a path visiting the new vertices v′1, v

′
2, v
′
3, v
′
4 in order to obtain

a hamiltonian cycle in Cu(GC)− v.
Since v1 is exceptional in G, we have that both v2 and v4 are non-exceptional in

G. We will now show that they remain non-exceptional in Cu(GC). The proof for
both cases is very similar, so we only give the proof for v2. Let h be a hamiltonian
cycle in G−v2. Since v1 is cubic, we have that v1v4 is contained in h, so (h−v1v4)∪
v1v
′
1v
′
2v
′
3v
′
4v4 is a hamiltonian cycle in Cu(GC)− v2.

Next we show that if v3 is non-exceptional, it remains non-exceptional. Assume
that G − v3 is hamiltonian and let h be a hamiltonian cycle in G − v3. Since v1 is
cubic, we have that at least one edge of v1v2 or v1v4 is contained in h. In either case
we can replace that edge by a path visiting the new vertices v′1, v

′
2, v
′
3, v
′
4 in order to

obtain a hamiltonian cycle in Cu(GC)− v.
Finishing the proof of (i), we show that v′1 and v′3 are non-exceptional. The vertex

v2 is non-exceptional in G. Let h be a hamiltonian cycle in G−v2. Since v1 is cubic,
we have that v1v4 is contained in h. The hamiltonian cycle (h−v1v4)∪v1v2v′2v′3v′4v4 is
a hamiltonian cycle in Cu(GC)−v′1 and the hamiltonian cycle (h−v1v4)∪v1v2v′2v′1v′4v4
is a hamiltonian cycle in Cu(GC)− v′3.

(ii) As Cu(GC) is non-hamiltonian, so is Th(GC). We consider G− {v1v2, v3v4}
to be a subgraph of Th(GC). Since v1 is non-exceptional and v3 has degree at
most 3, there exists a hamiltonian v2v4-path p in G− {v1, v3}. Seeing p as lying in
Th(GC), we may add to p the paths v2v3v

′
3v
′
2v
′
1v
′
4v4, v2v

′
2v
′
3v
′
4v
′
1v1v4, v2v3v

′
3v
′
4v
′
1v1v4,

or v2v3v
′
3v
′
2v
′
1v1v4. Thus, we find hamiltonian cycles in Th(GC)−v for v = v1, v3, v

′
2, v
′
4,

respectively.
Note that it cannot occur that v2 was non-exceptional in G but it (more precisely,

its image under Th) has become exceptional in Th(GC): Let h be a hamiltonian cycle
in G− v2. Since the degrees of v3 and v4 are at most 3, we have v3v4 ∈ E(h). Then
(h − v3v4) ∪ v3v′3v′2v′1v′4v4 gives a hamiltonian cycle in Th(GC) − v2, so v2 is non-
exceptional in Th(GC), too. The reasoning for v4 is analogous. More generally, very
similar arguments yield that if a vertex is exceptional in G, then so it is in Th(GC),
and if a vertex is non-exceptional in G, then so it is in Th(GC)—the details are left
to the reader and use the same rerouting idea as described above.
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Since G is perihamiltonian, the existence of the aforementioned hamiltonian
cycles implies that Th(GC) is perihamiltonian.

(iii) The proof is very similar to the proofs of (i) and (ii), and therefore omitted.

Theorem 4. For n odd, there exists a polyhedral perihamiltonian graph of order n
if and only if n ≥ 11. For n even, there exists a polyhedral perihamiltonian graph of
order n if n = 24, or n ≥ 28, and there does not exist a polyhedral perihamiltonian
graph of order n if n < 20.

Proof. It is well-known that Herschel’s 11-vertex graph is the smallest non-hamiltonian
polyhedral graph, and it is straightforward to verify that Herschel’s graph is a 5-
hypohamiltonian graph whose set of exceptional vertices is independent. Thus, by
Lemma 1, it is perihamiltonian. Applying Lemma 4, we obtain perihamiltonian
polyhedral graphs of order 11 + 4k for every k ≥ 0.

Take a hexagonal prism, denoting a facial hexagon with v1 . . . v6. Add a new
vertex v and the edges vv1, vv3 and vv5. We obtain a non-hamiltonian polyhe-
dron on 13 vertices. This graph is perihamiltonian. Applying Lemma 4, we obtain
perihamiltonian polyhedral graphs of order 13 + 4k for every k ≥ 0.

Consider the perihamiltonian polyhedron on 24 vertices from Fig. 4. This graph
was discovered as a platypus graph by Neyt in [15]. This graph contains exactly one
quadrangle which satisfies the properties of Lemma 4 (ii) so applying this lemma
we obtain perihamiltonian polyhedral graphs of order 24 + 4k for every k ≥ 0.
We can also find a fragment containing 23 vertices in this graph that satisfies the
properties of Theorem 3 such that the quadrangle is completely disjoint form the 3-
cut. Herschel’s 11-vertex graph contains a fragment on 10 vertices that satisfies the
properties of Theorem 3. Combining these two fragments using that theorem, we
obtain a perihamiltonian polyhedron on 30 vertices which still contains a quadrangle
which satisfies the properties of Lemma 4 (ii). Applying this lemma we obtain
perihamiltonian polyhedral graphs of order 30 + 4k for every k ≥ 0.

The non-existence of even orders up to 18 is handled computationally in Sec-
tion 5.

Thomassen [20] showed that there exist planar graphs which are not induced
subgraphs of any planar hypohamiltonian graph. We now extend this result to the
family of perihamiltonian graphs.

Proposition 4. There exists no perihamiltonian graph containing a triangulation
of the plane on at least 4 vertices as an induced subgraph. Thus, there exist no
perihamiltonian triangulations of the plane. Furthermore, there exist infinitely many
planar graphs which are not induced subgraphs of any planar perihamiltonian graph.

Proof. Let H 6= K3 be a triangulation of the plane and an induced subgraph of a
planar perihamiltonian graph G. G = H is impossible: on the one hand, in a peri-
hamiltonian graph G, any three pairwise adjacent vertices must be non-exceptional,
but on the other hand, by Whitney’s theorem [22] stating that planar 4-connected
triangulations are hamiltonian, a non-hamiltonian triangulation contains at least
one separating triangle—Lemma 3 states that every vertex of such a triangle must
be exceptional, a contradiction.
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Figure 4: A perihamiltonian polyhedron on 24 vertices. This graph was discovered
as a platypus graph by Neyt in [15].

So G 6= H. Then H is a 3-fragment of G and the attachments of H form a 3-cut
X in G. But since H is a triangulation, G[X] forms a separating triangle in G,
contradicting Lemma 3.

On the other hand, if we do not restrict ourselves to the plane, it was proven
in [30] that given an arbitrary graph H one can find a suitable hypohamiltonian
graph G (which, of course, is also perihamiltonian) such that H is an induced sub-
graph of G. This settles an old problem of Chvátal.

We end this section with the principal results of this article, emphasising that
the following theorems are motivated by Thomassen’s result stating that a planar
hypohamiltonian graph must contain a vertex that is cubic [19], and the question
whether this is true for the significantly larger class of perihamiltonian graphs. There
are two main ingredients in the proof of Thomassen’s result: on the one hand,
that every polyhedral graph with at most one 3-cut is hamiltonian, an extension
of Tutte’s classic theorem that planar 4-connected graphs are hamiltonian [21], and
on the other hand a gluing procedure for 3-fragments of hypohamiltonian graphs.
The former was recently strengthened to allow up to three 3-cuts while still being
able to infer hamiltonicity [4], and an extension of the latter to perihamiltonian
graphs follows shortly. But first, we answer affirmatively the question from this
paragraph’s first sentence and thus extend Thomassen’s theorem, noting that our
strategy is entirely different than Thomassen’s, but instead follows the same lines
as a proof given in [29].
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Theorem 5. Every planar perihamiltonian graph of connectivity κ contains a vertex
of degree κ.

Proof. Let G be a planar perihamiltonian graph. Combining the definition of peri-
hamiltonian graphs with Tutte’s result [21] stating that planar 4-connected graphs
are hamiltonian, G has connectivity 2 or 3.

The case when G has connectivity 2 follows immediately from Proposition 2. We
now may assume G to be of connectivity 3. It was proven in [4] that a polyhedral
graph of connectivity 3 must contain a 3-cut X = {x, y, z} such that for at least one
of the 3-fragments F, F ′ with attachments X (there are exactly two such fragments
since K3,3 is non-planar), say F , the graph F = F + xy + yz + zx is either K4 or
4-connected. Since G has minimum degree at least 4, F 6= K4, whence F must be
4-connected.

It is now easy to see that F contains a non-exceptional vertex v due to the fact
that, as G is perihamiltonian, no two exceptional vertices in G may be adjacent.
Since X is a 3-cut, the hamiltonicity of G− v yields, ignoring analogous cases, that
there exists either a hamiltonian yz-path p′ in F ′ − x (for v = x) or F ′ (for v /∈ X).

If there is a hamiltonian yz-path p′ in F ′ − x, we use a special case of [4,
Lemma 14], from which follows that F contains a hamiltonian yz-path p such that
E(p) ∩ {xy, yz, zx} = ∅. Then p ∪ p′ is a hamiltonian cycle in G, a contradiction.
If there is a hamiltonian yz-path p′ in F ′, we apply Sanders’ theorem stating that
in a planar 4-connected graph there exists a hamiltonian cycle through any pair of
edges [16]. Thus, we obtain a hamiltonian cycle in F using the edges xy, zx and thus
a hamiltonian yz-path p in F − x. Since none of the edges xy, yz, zx lie in p, the
path p lies in F − x. As above, p∪ p′ is a hamiltonian cycle in G, which contradicts
the perihamiltonicity of G.

We note that Theorem 5 cannot be strengthened to the statement “every planar
perihamiltonian graph contains a 2-valent vertex” as planar cubic perihamiltonian
graphs exist (see e.g. [20]).

However, by Proposition 2 we know that every perihamiltonian graph of connec-
tivity 2—planar or not—contains a 2-valent vertex. Is it true that every perihamil-
tonian graph of connectivity 3 must contain a cubic vertex? Related to this, for the
subclass of hypohamiltonian graphs Thomassen’s 1978 questions whether there are
hypohamiltonian graphs with no cubic vertices, or whether 4-connected such graphs
exist [19], remain open.

Going back to our introductory question whether every planar hypohamiltonian
graph contains a pair of adjacent cubic vertices, we now show that this is not true
for planar perihamiltonian graphs.

Theorem 6. There exists a polyhedral perihamiltonian graph containing exactly ten
cubic vertices, no two of which are adjacent. Furthermore, there exist infinitely many
polyhedral perihamiltonian graphs in which no two cubic vertices are adjacent, and
infinitely many polyhedral perihamiltonian graphs with a constant number of cubic
vertices.

Proof. For the first statement, let G be the polyhedral bipartite graph depicted in
Fig. 5. Denote the vertex bipartition given in Fig. 5 by (A,B), where A shall be the
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set of white vertices and B the set of black vertices. As |A| + 1 = |B|, the graph
G is non-hamiltonian, and every vertex in A is exceptional. We leave to the reader
the straightforward verification that every vertex in B is non-exceptional, whence,
G is perihamiltonian.

Let x be a white cubic vertex in G, for instance as chosen in Fig. 5. Put G′ =
G−x. Consider two copies of the 3-fragment G′ and identify its attachments (which
are, by construction, non-exceptional) as described in Theorem 3. We obtain a
perihamiltonian graph with no adjacent cubic vertices. From this graph in the same
manner a suitable 3-fragment can be obtained (again by choosing a cubic exceptional
vertex and deleting it) which we glue to G′, etc. This proves the second statement.

For the final statement, we apply Lemma 4 to G and a suitable quadrilateral
therein (e.g. the quadrilateral marked C = v1v2v3v4 in Fig. 5) to construct an infinite
family of polyhedral perihamiltonian graphs containing a constant number of cubic
vertices—for C as chosen here we obtain the constant 12.

C

v1 v2

v3v4

x

Figure 5: A polyhedral perihamiltonian graph containing exactly ten cubic vertices,
no two of which are adjacent.

Having established Theorems 5 and 6, we would very much like to know how
many cubic vertices a polyhedral perihamiltonian graph must contain—it is at least
one and at most eight (Herschel’s graph). It is known that a planar hypohamiltonian
graph contains at least four and at most thirty cubic vertices [28].

4 Higher connectivity

Although Thomassen’s question whether 4-connected hypohamiltonian graphs ex-
ist remains open [19], as indicated in Proposition 1 the complete bipartite graphs
Kk,k+1 yield structurally simple examples of k-connected perihamiltonian graphs.
We now address the natural question whether there are other such graphs. Follow-
ing Chvátal [5], we say that a pair of vertices (a, b) of a graph G is good if there is a
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hamiltonian ab-path in G. A pair of pairs ((a, b), (c, d)) of vertices of G is said to be
good if there exists a spanning subgraph of G consisting of two disjoint paths, one
between a and b and one between c and d. Chvátal used in [5] so-called flip-flops, a
generalisation of which (due to Hsu and Lin [11]) we now introduce: The quintuple
(H, a, b, c, d) is a J-cell if H is a graph and a, b, c, d ∈ V (H) such that

1. The pairs (a, d), (b, c) are good in H.

2. None of the pairs (a, b), (a, c), (b, d), (c, d), ((a, b), (c, d)), ((a, c), (b, d)) are good
in H.

3. For each v ∈ V (H) there is a good pair inH−v among (a, b), (a, c), (b, d), (c, d),
((a, b), (c, d)), ((a, c), (b, d)).

J-cells can be obtained by deleting two adjacent cubic vertices of a hypohamiltonian
graph—we remark that the smallest J-cell is obtained in this manner from the
Petersen graph—, as was observed by Horton, who used the five copies of the J-
cell obtained from the Petersen graph to construct the first (and smallest known)
example of a 3-connected hypotraceable graph [10]. Thomassen generalised Horton’s
construction [18]. Wiener [23, 24] further generalised this construction as follows.

Let Fi = (Hi, ai, bi, ci, di) be pairwise disjoint J-cells for i = 1, . . . , k and put

Gk =

(
k⋃

i=1

V (Hi),
k⋃

i=1

E(Hi) ∪
k−1⋃
i=1

biai+1 ∪
k−1⋃
i=1

cidi+1 ∪ bka1 ∪ ckd1

)
.

The graph Gk is 3-connected for all k ≥ 4. For a (possibly disconnected) graph
G, we denote by µ(G) the minimum number of vertex-disjoint paths that cover the
vertices of G (a path may consist of just one vertex), and G is k-path-critical if for
any v ∈ V (G) we have µ(G−v)+1 = µ(G) = k. (Hypotraceable and 2-path-critical
graphs coincide.) We need the following result.

Theorem 7 (Wiener [23]). For every k ≥ 0, the graph G4k+5 is (k+2)-path-critical.

For k = 1 the following lemma was already used in [26]—we now generalise it.

Lemma 5. For every k ≥ 1, the join G′ of kK1 and a (k+ 1)-path-critical graph G
is perihamiltonian.

Proof. We see G and the k copies of K1, which we write as a k-component graph
H, as subgraphs of G′. Let w ∈ V (H). Assume G′ (G′ −w) contains a hamiltonian
cycle h (hw). By construction, ω(G∩h) ≤ k and ω(G∩hw) ≤ k−1, but µ(G) = k+1,
so G′ and G′ − w are non-hamiltonian. Now let v ∈ V (G). Denote by (ai, bi)

k
i=1

the respective end-vertices of the k paths Pi which together span G − v, and put
V (H) = {v1, . . . , vk}. We write ai . . . bi for the path Pi traversed from ai to bi. Then

v1a1 . . . b1v2a2 . . . b2v3a3 . . . b3v4 . . . vkak . . . bkv1

is a hamiltonian cycle in G′ − v.
We have established that exc(G′) = V (H). Since the vertices of H = kK1 are

pairwise non-adjacent, G′ is perihamiltonian.
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Theorem 8. For every k ≥ 2, there exist infinitely many k-connected perihamilto-
nian graphs.

Proof. For k ∈ {2, 3}, this follows from the previous sections. It remains to show
the statement for k ≥ 4. Let ` ≥ 4 and construct G4`+5 as defined above, i.e. by
removing adjacent cubic vertices from hypohamiltonian graphs—there are infinitely
many such graphs, see e.g. [1]. The graph G4`+5 is 3-connected and, by Theorem 7,
(`+ 2)-path-critical. Let t ≥ 1. It is clear that G4`+5 + tK1 is (t+ 3)-connected. By
Lemma 5, G4`+5 + tK1 is perihamiltonian.

5 Computational results

Determining whether a graph is perihamiltonian is computationally hard. Therefore
it is unlikely to find an algorithm which can solve all instances efficiently. Our goal
was to develop a program which performs well for most instances we encounter. It
should be clear that instead of actually checking all edge-contracted graphs for being
hamiltonian, the better approach is to use Lemma 1. A naive implementation might
determine for each vertex whether it is exceptional or not and then verify whether
the set of exceptional vertices forms an independent set. Especially when a vertex
is exceptional, it might take a long time to determine that. Therefore our algorithm
receives non-hamiltonian graphs and starts by determining the status of a single
vertex. If this vertex is exceptional, then all of its neighbours are tested. If any of
the neighbours are exceptional, then the graph is not perihamiltonian. If the vertex
is non-exceptional the algorithm proceeds by selecting a new vertex which has an
undetermined status and has at least one neighbour with an undetermined status.
If no such vertex exists, then the graph is perihamiltonian. The order in which the
vertices is tested has been determined heuristically by trying several approaches and
choosing the one that performs best for smallish graphs.

Our implementation has been tested against an independent implementation for
all graphs on up to 10 vertices and we had complete agreement in all cases. It was
also tested on larger graphs for which the perihamiltonicity had been determined
theoretically.

In Table 1 we give an overview of all perihamiltonian graphs on up to 12 vertices.
The graphs themselves can be downloaded from House of Graphs [2] at http://

hog.grinvin.org/Perihamiltonian. The graphs were generated using geng [13],
and the perihamiltonicity was verified using the algorithm above combined with
a straightforward branch-and-bound algorithm which filters the non-hamiltonian
graphs and for which the implementation has already extensively been tested against
independent implementations. If we look at the girth of these graphs, we see that
the smallest perihamiltonian graphs with girth 3 have 12 vertices and there are six
such graphs (one is shown in Fig. 6). The smallest perihamiltonian graph with girth
4 has five vertices and is the subdivided wheel on five vertices, i.e. K2,3. The smallest
perihamiltonian graphs with girth 5 have ten vertices and are the Petersen graph
and the Petersen graph minus one edge. The smallest perihamiltonian graph with
girth 6 (resp. 7) has at most 25 (resp. 28) vertices: the former bound is shown by
the existence of a hypohamiltonian graph of girth 6 and order 25, see [7], while the
latter bound follows from Coxeter’s graph.
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n
Connectivity

Total Time
2 3 4 5

3 0 0.0 seconds
4 0 0.0 seconds
5 1 1 0.0 seconds
6 0 0.0 seconds
7 3 1 4 0.0 seconds
8 0 0.1 seconds
9 32 10 1 43 0.9 seconds
10 1 1 2 39.2 seconds
11 1305 410 14 1 1730 1.2 hours
12 25 25 10.7 days

Table 1: Number of perihamiltonian graphs on n vertices. The running time is total
CPU time on a cluster of Intel E5-2680v3 (Haswell-EP @ 2.5 GHz) CPUs.

Since the Petersen graph is perihamiltonian, and it is one of the two smallest
perihamiltonian graphs with even order, we have that the Petersen graph is the
smallest cubic perihamiltonian graph. We used genreg [14] to generate k-regular
graphs for k > 3 and test them for being perihamiltonian using the same setup as
described above. All quartic graphs on up to 20 vertices are non-perihamiltonian,
and all quintic graphs on up to 18 vertices are non-perihamiltonian.

For the generation of polyhedral graphs we used plantri [3] combined with a
custom plugin to modify the generation to exclude some graphs which are guaranteed
to not be perihamiltonian. More specifically, this plugin removed all graphs contain-
ing a facial triangle incident to at least one cubic vertex (see Proposition 1 (ii)). We
specifically focused on this property since it is very compatible with the generation
algorithm that plantri uses for general plane graphs and therefore allowed us to
efficiently and significantly bound the number of polyhedral graphs that were gen-
erated. Using this combination of plantri and plugin we determined all polyhedral
perihamiltonian graphs on up to 19 vertices. The counts and the time needed to gen-
erate these graphs are summarized in Table 2. The graphs themselves can be down-
loaded from House of Graphs [2] at http://hog.grinvin.org/Perihamiltonian.

Figure 6: One of the six smallest perihamiltonian graphs with girth 3.
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n Count Time

11 1 0.3 seconds
12 0 2.4 seconds
13 5 31.4 seconds
14 0 7.8 minutes
15 40 2.0 hours
16 0 1.3 days
17 476 21.0 days
18 0 340.3 days
19 6808 15.3 years

Table 2: Number of polyhedral perihamiltonian graphs on n vertices. The running
time is total CPU time on a cluster of Intel E5-2680v3 (Haswell-EP @ 2.5 GHz)
CPUs.

The minimum number of cubic vertices in a perihamiltonian polyhedron with less
than 20 vertices is eight, and none of the polyhedral perihamiltonian graphs with
less than 20 vertices has independent cubic vertices. Besides this setup, we also
developed plugins to only generate all polyhedral graphs with independent cubic
vertices and all polyhedral graphs with less than eight cubic vertices. The gener-
ation of these graphs was faster than the generation above, but nevertheless the
growth was such that neither of these was able to generate all polyhedral graphs
with 20 vertices in their respective class.

6 Open Problems

We end this paper with three open problems on perihamiltonian graphs.

1. Is there a perihamiltonian graph of girth greater than 7? Coxeter’s graph provides
an example of girth 7.

2. Do k-regular perihamiltonian graphs exist for k > 3?

3. What is the minimum number of cubic vertices a planar 3-connected perihamil-
tonian graph must contain?
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