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Abstract. A spider is a tree with at most one branch (a vertex of
degree at least 3) centred at the branch if it exists, and centred at
any vertex otherwise. A graph G is arachnoid if for any vertex v of
G, there exists a spanning spider of G centred at v—in other words:
there are spiders everywhere! Hypotraceable graphs are non-traceable
graphs in which all vertex-deleted subgraphs are traceable. Gargano,
Hammar, Hell, Stacho, and Vaccaro [Discrete Math. 285 (2004) 83–
95] defined arachnoid graphs as natural generalisations of traceable
graphs and asked for the existence of arachnoid graphs that are (i) non-
traceable and non-hypotraceable, or (ii) in which some vertex is the
centre of only spiders with more than three legs. An affirmative answer
to (ii) implies an affirmative answer to (i). While non-traceable, non-
hypotraceable arachnoid graphs were described in [J. Graph Theory
84 (2017) 443–459], (ii) remained open. In this paper we give an
affirmative answer to this question and discuss spanning spiders whose
legs must have some minimum length.
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1 Introduction

A graph is traceable if it contains a hamiltonian path. A non-traceable graph in
which all vertex-deleted subgraphs are traceable is called hypotraceable. In this
paper, a spider shall be either a path, or a tree with one vertex of degree at least 3
and all others with degree at most 2. A spider is centred at the vertex of degree at
least 3 if there is such a vertex, and centred at any vertex otherwise. A spider S in
a graph G is spanning if V (S) = V (G).

Motivated by an optical network design problem, Gargano, Hammar, Hell, Sta-
cho, and Vaccaro [5] introduced the following. A graph G is arachnoid if for any
vertex v of G, there exists a spanning spider of G centred at v—in other words, there
are spiders everywhere! Besides proving various results concerning spanning spiders,
they showed that it is NP-complete to decide whether a given graph is arachnoid.

Arachnoid graphs are natural generalisations of traceable graphs. Gargano et
al. observed that all hypotraceable graphs are arachnoid, but were unable to find
other non-traceable arachnoid graphs and therefore raised the question whether such
graphs exist. This was answered affirmatively in [8, 9]; the smallest example has
order 73 and all examples contain a vertex of high degree (more than 32

33
n, where

n is the order of the graph). In [10], among others, cubic examples appear. The
smallest construction in [10]—which happens to be cubic—has only 28 vertices.
It is the smallest known non-traceable arachnoid graph (since the smallest known
hypotraceable graph, found by Thomassen [6], has 34 vertices). Reference [10] also
relates arachnoid graphs to Gallai’s famous question whether in a connected graph
there always is a vertex lying on all longest paths [4]; it turns out that the answer
is negative, as shown by Walther [7], but determining in which graph classes the
answer is positive has led to intriguing results, see e.g. [1].

We will call a path starting at a vertex v a v-path, and a v-path ending at a
vertex w 6= v a vw-path. For a graph G, a subgraph H of G, and a vertex v ∈ V (G),
let degH(v) denote the number of vertices in H adjacent to v—note that v itself
need not lie in H. We put deg(v) = degG(v).

Gargano et al. raised a second interesting question [5, p. 93]: do arachnoid graphs
exist in which some vertex is the centre only to spanning spiders with more than
three legs?—formally, a leg of a spider S is a path in S whose end-vertices are the
centre and a leaf of S. Observe that while their first question, discussed above,
could be solved by an approach very much related to hypotraceability (although the
graphs used in the solution are not hypotraceable themselves, all of their vertices
have a neighbour whose deletion gives a traceable graph), in the second problem, this
strategy is out of question. In the following we present an affirmative solution to the
second Gargano et al. problem. It is worth mentioning that the same construction
also solves an open problem of [8, 9], namely whether there are arachnoid graphs
containing several vertices v, such that for all spanning spiders S centred at v, we
have degS(v) ≥ d for some fixed d ≥ 4.

Consider a graph G and a spanning spider S in G. A spanning spider centred at
the vertex v is a v-spider. If S is a v-spider with leaves L, then we call S a (v, L)-
spider. We say that a vertex v has a (k)-spider S if S is a v-spider and degS(v) = k,
and that v has a (≤ k)-spider S if S is a v-spider and degS(v) ≤ k.
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2 Arachnoid graphs in which some spanning spi-

ders must have more than three legs

Theorem 1. For n = 120 and every n ≥ 124 there exists a graph of order n in
which 108 vertices have a (3)-spider, while all other vertices have a (4)-spider but
no (≤ 3)-spider.

Proof. Consider the Petersen graph P shown in Fig. 1.

Fig. 1: The Petersen graph.

Denote three vertices of P with u1, u2, u3 as indicated in Fig. 1 and put U =
{u1, u2, u3}.

Claim 1.
(1.1) There exists a hamiltonian u1u2-path in P , as well as a hamiltonian u1u3-path
in P , but no hamiltonian u2u3-path in P .
(1.2) For every v ∈ V (G) \ U there exists a (v, U)-spider.
(1.3) For every i ∈ {1, 2, 3} there is a (ui, {z} ∪ U \ {ui})-spider for some z ∈
V (P ) \ U .

Lemma 1 (Clark and Entringer [3]). P is non-hamiltonian, yet there is a hamilto-
nian path between any pair of non-adjacent vertices of P .

Proof of Claim 1. Property (1.1) follows directly from Lemma 1. For (1.2) and (1.3),
see Figs. 2 and 3, respectively (symmetric cases are omitted). �

Fig. 2: Proof of property (1.2).
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Fig. 3: Proof of property (1.3).

Fig. 4: Three copies of the Petersen graph joined as depicted above
to obtain the graph ∆.

We use three copies of P to construct a new graph ∆ as shown in Fig. 4. We
denote three particular vertices of ∆ with w1, w2, w3 as indicated in Fig. 4 and put
W = {w1, w2, w3}.

Claim 2.
(2.1) For all i, j ∈ {1, 2, 3} with i 6= j there exists no hamiltonian wiwj-path in ∆.
(2.2) For every v ∈ V (∆) \W there exists a (v,W )-spider.
(2.3) For every i ∈ {1, 2, 3} there is a (wi, {z} ∪ W \ {wi})-spider for some z ∈
V (∆) \W .
(2.4) For any pairwise different i, j, k ∈ {1, 2, 3} there is a hamiltonian wjwk-path
in ∆− wi.
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Proof of Claim 2. We first prove the validity of Property (2.1). W.l.o.g. let i = 1
and j = 2. If there would exist a hamiltonian w1w2-path p in ∆, necessarily we
would have to traverse the copy P3 of the Petersen graph containing w3. By adding
to p ∩ P3 the appropriate edge, p ∩ P3 can be extended to a hamiltonian cycle in
P3, a contradiction, since the Petersen graph is non-hamiltonian. Property (2.2)
follows from Properties (1.2) and (1.1). Property (2.3) follows from Property (1.3)
and Lemma 1. The final property, (2.4), follows from Lemma 1 and the existence of
a hamiltonian cycle C in Pi−wi, where Pi indicates the copy of the Petersen graph
containing wi; notice that C uses the edge between the two tetravalent vertices of
Pi. �

We construct the graph G as shown in Fig. 5, where each of the grey triangles
represents a copy of ∆, the triple of white vertices in each copy of ∆ are the respective
copies of w1, w2, w3, and the dashed lines between white vertices represent edges
(referred to as dashed edges in the sequel).

Fig. 5: The graph G, constructed from four copies of ∆.

We now show the statement for order |V (G)| = 120. Let v be an arbitrary non-
white vertex in G and let ∆′ be that one of the four copies of ∆, which contains v.
Furthermore, let w1, w2, w3 be the set of white vertices of ∆′. By Property (2.2), ∆′

contains a (v, {w1, w2, w3})-spider. Adding the dashed edges incident with w1, w2, w3

to reach the other copies of ∆ and using Property (2.4), we can find a (3)-spider in
G centred at v as illustrated in Fig. 6.

Let v be a white vertex of G. Using Property (2.3) instead of Property (2.2)
in the aforementioned construction, we obtain a (4)-spider centred at v. In order
to show that there is no (≤ 3)-spider centred at the white vertices, we need the
following property.

Claim 3. In a spanning spider S of G, each copy of ∆ contains the centre of S or
a leaf of S (possibly both).

Proof of Claim 3. Let us assume to the contrary that there exists a copy ∆′ of ∆,
say the one depicted in Fig. 4, containing neither the centre of S nor a leaf of S.
Thus, since S spans G, there must exist a wiwj-path that spans ∆′, for some i and
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Fig. 6: A (3)-spider (drawn in wavy lines) in G centred at v.

j. In order for such a path to exist we need to fully traverse one of the copies of the
Petersen graph present in ∆′—however, this leads to a contradiction with the fact
that the Petersen graph is non-hamiltonian (since the endvertices of the traversal
would be neighbours in the Petersen graph). This completes the proof of Claim 3.
�

A very similar argument yields that G is non-traceable, so G contains no (≤ 2)-
spider.

Now let us assume that G contains a (3)-spider S centred at a white vertex v.
By Claim 3, there would have to be a leaf of S in each of the copies of ∆ different
from ∆′. Since S is a (3)-spider, no leaf of S may lie in ∆′. As v is a white vertex,
this would imply that there is a path between two white vertices of ∆′ that spans
∆′—this however contradicts Property (2.1).

We have shown the statement for order 120, and now prove it for n ≥ 124.
Consider the graph G depicted in Fig. 5. Let us subdivide at least two dashed edges
of G with at least two new vertices for each edge. We denote the set of new vertices
by K and add an edge between any two non-adjacent vertices of K to obtain a new
graph Gk, where k = |V (K)|. Obviously, Gk[K] is a complete graph on k vertices.
The arguments for n ≥ 124 very much resemble those given for n = 120, so we will
be succinct.

The crucial observation here is that for every spanning spider S of Gk, each of
the grey triangles from Fig. 5 contains at least one leaf or the vertex at which S is
centred. (This follows from the non-hamiltonicity of the Petersen graph, just like
Claim 3.) There are essentially three types of vertices acting as the centre of a
spider.

(i) The spider is centred at one of the white vertices of a grey triangle. Then
that triangle must also contain a leaf of the spider, again due to Property (2.1).

(ii) The spider is centred at one of the non-white vertices of a grey triangle.
Then, following the same arguments as above, we see that there is a spanning spider
centred at that vertex with three leaves.

(iii) The centre v of the spanning spider is a vertex of K, see Fig. 7. Clearly,
this spider cannot be a (≤ 3)-spider, since it must have a leaf in all 4 grey triangles.
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How to find a (4)-spider centred at v is depicted in Fig. 7 (it is important to note
that ab ∈ E(Gk)—this also motivates the requirement that on each dashed edge we
need 0 or at least two new vertices).

Fig. 7: A (4)-spider (drawn in wavy lines) in Gk centred at v.

This completes the proof. �

3 Open problems

For a spider S, we denote with L(S) the set of leaves of S and put `(S) = |L(S)|.
Let G be an arachnoid graph. For v ∈ V (G), put

ml(v) = min
S is a v-spider

`(S).

Consider the function

σ : V (G)→ N, v 7→


0 if G is traceable

min
S is a v-spider
s.t. `(S) = ml(v)

min
w∈L(S)

distS(v, w) else,

where distS(v, w) denotes the length of a shortest vw-path in S; the length of a
path P is defined as |E(P )|. We now extend the observation that for hypotraceable
graphs we have σ(v) = 1 for all v ∈ V (G) and simultaneously generalise [10, Prop. 3]
as well as [5, Prop. 6]. But first, we need a definition from [10]. Consider a graph
G whose longest path has length |V (G)| − 2 and let W ⊂ V (G) be the set of all
vertices w such that G − w is non-traceable. We then call every vertex from W
exceptional, and say that G is |W |-hypotraceable.
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Proposition 1. Let G be a k-hypotraceable graph with exceptional vertices W , and
let degW (v) < deg(v) hold for every v ∈ V (G). Then G is arachnoid. In particular,
if |W | < δ(G), then G is arachnoid and σ(v) = 1 for all v ∈ V (G).

Proof. Let W be the set of exceptional vertices of G, and v ∈ V (G) arbitrary. Since
|N(v) ∩ W | < deg(v), v has a neighbour u /∈ W . As u is non-exceptional, there
exists a hamiltonian path p in G− u. Now p∪ uv is a spanning spider of G centred
at v.

G is non-traceable, so σ(v) 6= 0 for all v ∈ V (G). However, since for each vertex
v ∈ V (G) there is a v-spider with a leg of length 1 we have that σ(v) = 1 for all
v ∈ V (G). �

As mentioned in the introduction, traceable and hypotraceable graphs were
the two families of arachnoid graphs found by Gargano et al. in [5]—they asked
whether more exist. In [8, 9], the first author presented an infinite family of non-
traceable non-hypotraceable arachnoid graphs G, settling the aforementioned ques-
tion of Gargano et al. affirmatively. By construction, all vertices of each graph G ∈ G
have a neighbour whose deletion gives a traceable graph, from which σ(v) = 1 follows
for each vertex v in G—in fact, if all spiders have three legs, then this characterises
the examples in which each σ(v) is equal to 1. He also showed that for any pre-
scribed graph H there exists a non-traceable non-hypotraceable arachnoid graph
that contains H as an induced subgraph.

We now compute the σ-values of vertices of graphs lying in the family constructed
in our main theorem. Let G be such a graph. We differentiate between three types
of vertices according to their role in Fig. 7: V1(G) shall be the set of white vertices,
V2(G) the set of vertices located on the dashed edges and not in V1(G), and V3(G)
the set of vertices in the grey triangles and not in V1(G).

Let v ∈ V1(G). The structure of a v-spider (which necessarily has exactly four
legs) is clear from the proof of the theorem—see Fig. 6 but consider v to be a white
vertex, and recall that a fourth leg appears. By the structural properties of the
Petersen graph and the graph ∆, it is now not difficult to see that σ(v) = 1.

Let v ∈ V2(G). We are in the situation depicted in Fig. 7. If v is adjacent to a
white vertex, we have σ(v) = 1. In all other cases σ(v) = 2, since we can choose the
vertex a (see Fig. 7) to be adjacent to a white vertex.

Let v ∈ V3(G). We are in the situation shown in Fig. 6. We have

σ(v) = 1 + min
i∈{1,2,3}

(dist∆(v, wi) + ρi),

where ρi is 0 if no vertices were added to the dashed edge incident with (the white
vertex) wi, and 2 otherwise.

We have established that every graph constructed in Theorem 1 contains vertices
whose σ-value is 1. Thus, the following natural question remains open.

Problem 1. Is there an arachnoid graph G with σ(v) ≥ 2 for all v ∈ V (G)?

As we have mentioned earlier, the construction presented in Theorem 1 also
solves a problem raised in [8, 9], namely whether there exist arachnoid graphs con-
taining several vertices that do not have a (d− 1)-spider for some fixed d ≥ 4. The
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construction works only for d = 4, obviously, thus for the values d ≥ 5 this problem
is still open—even if we require just one vertex without a (≤ d−1)-spider. Now that
both questions of Gargano et al. [5] concerning the existence of certain arachnoid
graphs have been answered (and actually a bit more) we may go a little further and
ask:

Problem 2. Do arachnoid graphs exist in which no vertex has a (≤ 3)-spider (or
even a (≤ d− 1)-spider for some d ≥ 5)?

We are also interested in a different stronger version of Theorem 1:

Problem 3. Is there a planar analogue of Theorem 1?

We end this paper with a relaxation of Grötschel’s question whether bipartite
hypotraceable graphs exist [2, p. 54]. It is easy to see that if an arachnoid graph G is
bipartite with partite sets A and B, then ||A| − |B|| ≤ 1, and if G is hypotraceable,
then |A| = |B|.

Problem 4. Do non-traceable bipartite arachnoid graphs exist?
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