Non-hamiltonian 1-tough triangulations with disjoint separating triangles

JUN FUJISAWA* and CAROL T. ZAMFIRESCU†

Abstract. In this note, we consider triangulations of the plane. Ozeki and the second author asked whether there are non-hamiltonian 1-tough triangulations in which every two separating triangles are disjoint. We answer this question in the affirmative and strengthen a result of Nishizeki by proving that there are infinitely many non-hamiltonian 1-tough triangulations with pairwise disjoint separating triangles.

Key words. Triangulation, separating triangle, non-hamiltonian, 1-tough.

MSC 2010. 05C45, 05C42, 05C10.

1 Introduction

In this note, a triangulation shall be a plane 3-connected graph in which every face is a triangle. (Triangulations are also known as maximal planar graphs, since the addition of any edge renders the graph non-planar.) For a possibly disconnected graph G, denote by $c(G)$ the number of connected components of G. In a triangulation G, a triangle T is said to be separating if $c(G - T) > 1$. For triangles T and T' in G the distance between T and T' shall be the number of edges of a shortest path in G between $v \in V(T)$ and $v' \in V(T')$ for all possible combinations of v and v'.

Answering a question of Böhme, Harant, and Tkáč [2], Böhme and Harant [1] showed that for any non-negative integer d there exists a non-hamiltonian triangulation with seven separating triangles every two of which lie at distance at least d. Ozeki and the second author [8] proved that the result holds even if we replace ‘seven’ by ‘six’. We note that no non-hamiltonian triangulation with fewer than six separating triangles is known, while Jackson and Yu [6] showed that every triangulation with at most three separating triangles is hamiltonian. (It was recently proven that this result’s generalisation to polyhedral graphs—where 3-vertex-cuts replace separating triangles—is valid, as well [3].)

*Faculty of Business and Commerce, Keio University, Hiyoshi 4-1-1, Kohoku-Ku, Yokohama, Kanagawa 223-8521, Japan. E-mail address: fujisawa@fbc.keio.ac.jp

†Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 - S9, 9000 Ghent, Belgium and Department of Mathematics, Babeş-Bolyai University, Cluj-Napoca, Roumania. E-mail address: czamfirescu@gmail.com
Chvátal [4] introduced the toughness of a non-complete graph G as
\[t(G) = \min \left\{ \frac{|X|}{c(G - X)} : X \subseteq V(G), c(G - X) > 1 \right\}. \]

The toughness of a complete graph is convened to be ∞. A graph G is t-tough whenever $t \leq t(G)$. Chvátal observed that every hamiltonian graph is 1-tough [4]. In 1979 he raised the question whether l-toughness is a sufficient condition for a triangulation to be hamiltonian, and Nishizeki settled this by proving that there is a non-hamiltonian 1-tough triangulation [7]. (Dillencourt [5] showed that there exists a smaller such triangulation, namely one of order 15, and Tkáč [10] proved that there exists such a triangulation of order 13, and no smaller one. Tkáč’s triangulation contains seven separating triangles.)

Recently, Ozeki and the second author asked whether there are non-hamiltonian 1-tough triangulations in which every two separating triangles are disjoint, see [8, Remark (a)]. We now answer this question in the affirmative and strengthen Nishizeki’s result.

2 Result

Theorem. There exist infinitely many non-hamiltonian 1-tough triangulations with pairwise disjoint separating triangles.

For the proof of this theorem we will use the following lemma.

Lemma (Nishizeki [7]). Let G be a graph and $S \subseteq V(G)$. If for a vertex v in G, the graph $G - v$ is 1-tough, and if $c(G - S) > |S|$, then v does not belong to S but all of its neighbours do.

Proof of the Theorem. In the first part of the proof, we construct a triangulation G with the desired properties, and in the second part we present an infinite family. Consider the circular arrangement of five copies H_1, \ldots, H_5 of the graph H shown in Fig. 1 so that the respective copies of v_1v_3 and x_3v_7 are being identified. All 15 outer half-edges are connected to the vertex y (which does not lie in H). We obtain a plane graph G' in which all faces are triangles with exactly one exception, which is a decagon $D = x_1x_2 \ldots x_{10}$. Inside D, we insert the graph F depicted in Fig. 2 so that $G' \cap F = D$. We have obtained a triangulation G.

Visual inspection of Figs. 1 and 2 yields that the separating triangles of G, of which there are 20 in total, are pairwise disjoint. In G', the separating triangles are the respective copies of $v_1x_1v_3$ and $v_4x_2v_6$. In F, the separating triangles are bce and its symmetric counterparts. We leave to the reader the verification that these are indeed all separating triangles of G.

Suppose there exists a hamiltonian cycle h in G. Denote the five copies of $H - x_3 - v_7$ by H'_i such that $H'_i \subset H_i$. Because F has 40 black vertices (marked by black dots in Fig. 2) and 41 non-black vertices (in what follows called white) h has exactly two edges between F and $G - F$, so in one of H'_i, w.l.o.g. H'_1, the cycle h contains no edge incident with x_1, x_2 or y. Then there exists a path $p = h \cap H'_1$ which is a hamiltonian v_1v_6-path in $H'_1 - x_1 - x_2$ (vertices in H'_i carry the same name as their counterparts in H). It is
clear that p contains $v_1v_2v_3$ and $v_4v_5v_6$ as subpaths. But this implies that v_9 cannot be visited by p, a contradiction. Therefore G is non-hamiltonian.

We now show that G is indeed 1-tough. We follow a similar strategy as Nishizeki in [7] and first prove that for every vertex v in a certain set $W \subset V(G)$, the graph $G - v$ is hamiltonian, ergo 1-tough. The set W is composed of the copies of v_2, v_5, and v_9 in each copy H_i of H (marked with black dots in Fig. 1—henceforth, these vertices will be called black, and non-black vertices white). We define three types of path in H (using the notation from Fig. 1):

Type 1: $v_1v_9v_8v_3v_4v_5v_6$ (avoids v_2) or $v_1v_2v_3v_8v_9v_6$ (avoids v_5) or $v_1v_2v_3v_4v_5v_6$ (avoids v_9)

Type 2: $x_1v_2v_3v_1v_9v_8v_4v_5v_6$

Type 3: $v_1v_2v_3v_4v_5v_6v_9$

We use these paths to show that $G - v$ is hamiltonian for every v in W. In what follows, in certain cases it may be necessary to consider symmetric versions of these paths. By symmetry, it suffices to show that $G - v_2$, $G - v_5$, and $G - v_9$ are hamiltonian. These cycles can be found by using Types 1–3 as depicted in Fig. 3. In F, we use the path shown in Fig. 2.

Assume that there exists a set $S \subset V(G)$ such that $c(G - S) > |S|$. By above argument, we can apply the Lemma and obtain that $W \cap S = \emptyset$ and for every vertex in W, all of its neighbours lie in S. Let $S_1 \subset S$ be the white vertices of G' (this includes y as well as x_1, \ldots, x_{10}), and $S_2 \subset S$ be located in $F - D$. Thus S is the disjoint union of S_1 and S_2. There are 36 white vertices in G' and we would obtain $|W| = 15$ components if these white vertices were to be removed from G'. Since F is hamiltonian, $F - (S \cap V(F))$ contains at most $|S \cap V(F)| = |S_2| + 10$ components. In $G - S$, we obtain at most $15 + |S_2| + 10 = |S_2| + 25$ components. Since

$$c(G - S) \leq |S_2| + 25 < |S_2| + 36 = |S|,$$

we have obtained a contradiction.
In this second part of the proof we show that there are infinitely many graphs with the properties described in the theorem’s statement. Consider the graph from Fig. 4 from which the vertex w has been removed. We call this graph Q. Adding to Q a new vertex w and the edges wa, wb, wc, wd, we obtain a graph Q'. As Q' is planar and 4-connected, by a theorem of Thomas and Yu [9] there exists a hamiltonian cycle h in $Q' - a - b$. Then $h - w$ yields a hamiltonian cd-path in $Q - a - b$. We now insert Q into the quadrilateral $abcd$ from Fig. 2 from which the interior vertex has been removed and the proof is complete. This shows that each member of this infinite family is non-hamiltonian and, by the same argument, 1-tough.
An important problem in this field is the question whether there are non-hamiltonian $\frac{3}{2}$-tough triangulations. Unfortunately, we do not see how our method can be applied to attack this problem. The intriguing question of Böhme, Harant, and Tkáč (see [2, Remark 1]) whether non-hamiltonian triangulations with fewer than six separating triangles exist also remains open. We end this note with a problem of our own.

Question. What is the minimum number of separating triangles in a non-hamiltonian 1-tough triangulation with pairwise disjoint separating triangles?

Acknowledgements. Fujisawa’s work is supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (B) 16H03952 and (C) 17K05349. Zamfirescu’s research is supported by a Postdoctoral Fellowship of the Research Foundation Flanders (FWO).

References

