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Abstract. In this note, we consider triangulations of the plane. Ozeki
and the second author asked whether there are non-hamiltonian 1-
tough triangulations in which every two separating triangles are dis-
joint. We answer this question in the affirmative and strengthen a
result of Nishizeki by proving that there are infinitely many non-
hamiltonian 1-tough triangulations with pairwise disjoint separating
triangles.
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1 Introduction

In this note, a triangulation shall be a plane 3-connected graph in which every face is a
triangle. (Triangulations are also known as maximal planar graphs, since the addition
of any edge renders the graph non-planar.) For a possibly disconnected graph G, denote
by c(G) the number of connected components of G. In a triangulation G, a triangle T is
said to be separating if c(G−T ) > 1. For triangles T and T ′ in G the distance between
T and T ′ shall be the number of edges of a shortest path in G between v ∈ V (T ) and
v′ ∈ V (T ′) for all possible combinations of v and v′.

Answering a question of Böhme, Harant, and Tkáč [2], Böhme and Harant [1]
showed that for any non-negative integer d there exists a non-hamiltonian triangulation
with seven separating triangles every two of which lie at distance at least d. Ozeki
and the second author [8] proved that the result holds even if we replace ‘seven’ by
‘six’. We note that no non-hamiltonian triangulation with fewer than six separating
triangles is known, while Jackson and Yu [6] showed that every triangulation with
at most three separating triangles is hamiltonian. (It was recently proven that this
result’s generalisation to polyhedral graphs—where 3-vertex-cuts replace separating
triangles—is valid, as well [3].)
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Chvátal [4] introduced the toughness of a non-complete graph G as

t(G) = min

{
|X|

c(G−X)
: X ⊆ V (G), c(G−X) > 1

}
.

The toughness of a complete graph is convened to be∞. A graph G is t-tough whenever
t ≤ t(G). Chvátal observed that every hamiltonian graph is 1-tough [4]. In 1979 he
raised the question whether l-toughness is a sufficient condition for a triangulation to
be hamiltonian, and Nishizeki settled this by proving that there is a non-hamiltonian
1-tough triangulation [7]. (Dillencourt [5] showed that there exists a smaller such
triangulation, namely one of order 15, and Tkáč [10] proved that there exists such
a triangulation of order 13, and no smaller one. Tkáč’s triangulation contains seven
separating triangles.)

Recently, Ozeki and the second author asked whether there are non-hamiltonian
1-tough triangulations in which every two separating triangles are disjoint, see [8,
Remark (a)]. We now answer this question in the affirmative and strengthen Nishizeki’s
result.

2 Result

Theorem. There exist infinitely many non-hamiltonian 1-tough triangulations with
pairwise disjoint separating triangles.

For the proof of this theorem we will use the following lemma.

Lemma (Nishizeki [7]). Let G be a graph and S ⊂ V (G). If for a vertex v in G, the
graph G − v is 1-tough, and if c(G − S) > |S|, then v does not belong to S but all of
its neighbours do.

Proof of the Theorem. In the first part of the proof, we construct a triangulation
G with the desired properties, and in the second part we present an infinite family.
Consider the circular arrangement of five copies H1, . . . , H5 of the graph H shown
in Fig. 1 so that the respective copies of x1v1 and x3v7 are being identified. All 15
outer half-edges are connected to the vertex y (which does not lie in H). We obtain a
plane graph G′ in which all faces are triangles with exactly one exception, which is a
decagon D = x1x2 . . . x10. Inside D, we insert the graph F depicted in Fig. 2 so that
G′ ∩ F = D. We have obtained a triangulation G.

Visual inspection of Figs. 1 and 2 yields that the separating triangles of G, of which
there are 20 in total, are pairwise disjoint. In G′, the separating triangles are the
respective copies of v1x1v3 and v4x2v6. In F , the separating triangles are bce and its
symmetric counterparts. We leave to the reader the verification that these are indeed
all separating triangles of G.

Suppose there exists a hamiltonian cycle h in G. Denote the five copies of H−x3−v7
by H ′

i such that H ′
i ⊂ Hi. Because F has 40 black vertices (marked by black dots in

Fig. 2) and 41 non-black vertices (in what follows called white) h has exactly two edges
between F and G−F , so in one of H ′

i, w.l.o.g. H ′
1, the cycle h contains no edge incident

with x1, x2 or y. Then there exists a path p = h∩H ′
1 which is a hamiltonian v1v6-path

in H ′
1 − x1 − x2 (vertices in H ′

i carry the same name as their counterparts in H). It is
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Fig. 1: The graph H, five copies of which, together with y, form G′.

clear that p contains v1v2v3 and v4v5v6 as subpaths. But this implies that v9 cannot
be visited by p, a contradiction. Therefore G is non-hamiltonian.

We now show that G is indeed 1-tough. We follow a similar strategy as Nishizeki
in [7] and first prove that for every vertex v in a certain set W ⊂ V (G), the graph
G− v is hamiltonian, ergo 1-tough. The set W is composed of the copies of v2, v5, and
v9 in each copy Hi of H (marked with black dots in Fig. 1—henceforth, these vertices
will be called black, and non-black vertices white). We define three types of path in H
(using the notation from Fig. 1):

Type 1: v1v9v8v3v4v5v6 (avoids v2) or v1v2v3v4v8v9v6 (avoids v5) or v1v2v3v8v4v5v6
(avoids v9)
Type 2: x1v2v3v1v9v8v4v5v6
Type 3: v1v2v3v4v5v6v8v9

We use these paths to show that G − v is hamiltonian for every v in W . In what
follows, in certain cases it may be necessary to consider symmetric versions of these
paths. By symmetry, it suffices to show that G−v2, G−v5, and G−v9 are hamiltonian.
These cycles can be found by using Types 1–3 as depicted in Fig. 3. In F , we use the
path shown in Fig. 2.

Assume that there exists a set S ⊂ V (G) such that c(G − S) > |S|. By above
argument, we can apply the Lemma and obtain that W ∩S = ∅ and for every vertex in
W , all of its neighbours lie in S. Let S1 ⊂ S be the white vertices of G′ (this includes
y as well as x1, . . . , x10), and S2 ⊂ S be located in F − D. Thus S is the disjoint
union of S1 and S2. There are 36 white vertices in G′ and we would obtain |W | = 15
components if these white vertices were to be removed from G′. Since F is hamiltonian,
F − (S ∩ V (F )) contains at most |S ∩ V (F )| = |S2| + 10 components. In G − S, we
obtain at most 15 + |S2|+ 10 = |S2|+ 25 components. Since

c(G− S) ≤ |S2|+ 25 < |S2|+ 36 = |S|,

we have obtained a contradiction.
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Fig. 2: A hamiltonian path in F .
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Fig. 3: Hamiltonian cycles in certain vertex-deleted subgraphs of G.
When avoiding v9, we use the dotted path.

In this second part of the proof we show that there are infinitely many graphs with
the properties described in the theorem’s statement. Consider the graph from Fig. 4
from which the vertex w has been removed. We call this graph Q. Adding to Q a
new vertex w and the edges wa,wb, wc, wd, we obtain a graph Q′. As Q′ is planar
and 4-connected, by a theorem of Thomas and Yu [9] there exists a hamiltonian cycle
h in Q′ − a − b. Then h − w yields a hamiltonian cd-path in Q − a − b. We now
insert Q into the quadrilateral abcd from Fig. 2 from which the interior vertex has
been removed and the proof is complete. This shows that each member of this infinite
family is non-hamiltonian and, by the same argument, 1-tough. �
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Fig. 4: The graph Q′.

An important problem in this field is the question whether there are non-hamiltonian
3
2
-tough triangulations. Unfortunately, we do not see how our method can be applied

to attack this problem. The intriguing question of Böhme, Harant, and Tkáč (see
[2, Remark 1]) whether non-hamiltonian triangulations with fewer than six separating
triangles exist also remains open. We end this note with a problem of our own.

Question. What is the minimum number of separating triangles in a non-hamiltonian
1-tough triangulation with pairwise disjoint separating triangles?
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[2] T. Böhme, J. Harant, and M. Tkáč. On the minimal number of separating 3-cycles
in non-Hamiltonian maximal planar graphs. Tatra Mt. Math. Publ. 9 (1996) 97–
102.

[3] G. Brinkmann and C. T. Zamfirescu. Polyhedra with few 3-cuts are hamiltonian.
Electron. J. Combin. 26, Iss. 1 (2019) Article Number P1.39.
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