
Cubic vertices in planar hypohamiltonian graphs
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Abstract. Thomassen showed in 1978 that every planar hypohamil-
tonian graph contains a cubic vertex. Equivalently, a planar graph
with minimum degree at least 4 in which every vertex-deleted sub-
graph is hamiltonian, must be itself hamiltonian. By applying work
of Brinkmann and the author, we extend this result in three direc-
tions. We prove that (i) every planar hypohamiltonian graph contains
at least four cubic vertices, (ii) every planar almost hypohamiltonian
graph contains a cubic vertex which is not the exceptional vertex (solv-
ing a problem of the author raised in [J. Graph Theory 79 (2015) 63–
81]), and (iii) every hypohamiltonian graph with crossing number 1
contains a cubic vertex. Furthermore, we settle a recent question of
Thomassen by proving that asymptotically the ratio of the minimum
number of cubic vertices to the order of a planar hypohamiltonian
graph vanishes.
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1 Introduction

Throughout this paper all graphs are undirected, finite, connected, and contain neither
loops nor multiple edges. A graph G is called hypohamiltonian if G is non-hamiltonian,
but for every vertex v in G, the graph G− v is hamiltonian. See the 1993 survey [15]
by Holton and Sheehan for an overview of results. Hypohamiltonian graphs have a
wide range of applications in problems on longest paths and longest cycles [21]—one
can for instance prove that Gallai’s question [10] whether in every graph there is a ver-
tex in the intersection of all longest paths has a negative answer, and that there exist
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3-connected graphs in which any pair of vertices is avoided by a longest cycle [4, 37].
Recently, Ozeki and Vrána [20] applied hypohamiltonicity to show that infinitely many
2-hamiltonian but not 2-edge-hamiltonian-connected graphs exist, while Wiener uses
hypohamiltonian graphs to study a criticality notion concerning the number of leaves
in spanning trees [31]. Ties between hypohamiltonian graphs and snarks have been
studied extensively, see for instance [6]. Recently it was shown that every hypohamil-
tonian snark has a 5-flow [18]. The Four Colour Theorem is equivalent to the statement
that every snark is non-planar; here, we will be interested in the structural properties
of planar hypohamiltonian graphs. After Chvátal had asked whether such graphs ex-
ist [8] and Grünbaum conjectured that they do not [13, p. 37], an infinite family was
described by Thomassen [25].

For results treating the planar case and which are not included in [15], we refer to the
works of Aldred, Bau, Holton, and McKay [3], the author and Zamfirescu [35, 36], Araya
and Wiener [4, 33], Jooyandeh, McKay, Österg̊ard, Pettersson, and the author [16],
McKay [19], Goedgebeur and the author [11, 12], and Wiener [32]. For the situation
in directed graphs, see for instance [1], which answers affirmatively Thomassen’s [26,
Question 9] from 1976 whether planar hypohamiltonian oriented graphs exist.

A graph G of connectivity k which is not a complete graph contains two non-empty
induced subgraphs G1, G2 such that G = G1 ∪ G2 and V (G1) ∩ V (G2) = A, where
|A| = k. We say that G1 is a k-fragment of G and that A is the set of vertices of
attachment of G1. A k-fragment is trivial if it contains exactly k + 1 vertices.

In the light of Steinitz’ Theorem [22], we call planar 3-connected graphs polyhedra.
In a 3-connected graph, a vertex cut-set X of cardinality 3 will be called a 3-cut. X is
called trivial if it coincides with the set of vertices of attachment of a trivial 3-fragment.
3-connected graphs in which every 3-cut is trivial are called essentially 4-connected. A
path with end-vertices v and w is a vw-path. A path, cycle, or face (in a plane graph)
with k vertices will be called a k-path, -cycle, or -face, respectively, and, seen as a
subgraph of a graph G, it will be called cubic if all of its vertices are cubic in G.

Consider a 2-connected graph G of circumference |V (G)| − 1 and let W ⊂ V (G)
be the (possibly empty) set of all vertices such that for every w ∈ W the graph G−w
is non-hamiltonian. Thus, for all v ∈ V (G) \W , the graph G− v is hamiltonian, and
we have |W | ≤ |V (G)| − 1. We say that G is |W |-hypohamiltonian. (Note that van
Aardt et al. define in [2] an r-hypohamiltonian digraph differently.) A vertex from W
is called exceptional. 0-hypohamiltonian graphs coincide with hypohamiltonian graphs
and 1-hypohamiltonian graphs are called almost hypohamiltonian. Hypohamiltonian
and almost hypohamiltonian graphs are 3-connected, but 2-hypohamiltonian graphs
of connectivity 2 exist. A graph G is k-hamiltonian if G− S is hamiltonian for every
S ⊂ V (G) with |S| ≤ k.

In the remainder of this article, we shall tacitly use the following fact. Let G be a
k-hypohamiltonian graph of connectivity 3, and X a 3-cut in G containing a vertex v
which is not an exceptional vertex of G. Then G −X has exactly two components—
this follows directly from the hamiltonicity of G− v. Note that this holds for arbitrary
3-cuts in polyhedra as well, since K3,3 is non-planar. When we say that a graph is the
“smallest” graph satisfying a particular condition, we mean that there exist no graphs
of smaller order with that property.
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2 Planar hypohamiltonian graphs

Using a result of Tutte [29], Thomassen showed the following.

Theorem 1 (Thomassen [26]). Every planar hypohamiltonian graph contains a cubic
vertex.

As Thomassen writes in [28] we can reformulate this result in a perhaps more
appealing way: if G is a planar graph with minimum degree at least 4 and every
vertex-deleted subgraph of G is hamiltonian, then G itself must be hamiltonian.

For the first extension of this result, we need the following ingredients, the first
of which is a strengthening of the classical result of Tutte that every 4-connected
polyhedron is hamiltonian [29].

Theorem 2 (Brinkmann and Zamfirescu [7]). Polyhedra containing at most three
3-cuts are hamiltonian.

Lemma 1 (Thomassen [26]). Let G be a 3-connected graph with n ≥ 6 vertices. If
G contains more than one non-trivial 3-cut, then G contains a non-trivial 3-fragment
with fewer than 1

2
(n + 3) vertices.

The following lemma generalises the author’s [34, Theorem 3] and [34, Theorem 6],
as well as Thomassen’s [26, Corollary 1], and in essence belongs to him.

Lemma 2. Let i ∈ {1, 2}. Consider the disjoint graphs G1 and G2 such that Gi is
ki-hypohamiltonian, with Wi as set of exceptional vertices. Let Hi be a non-trivial 3-
fragment of Gi, with the set Xi of vertices of attachment of Hi disjoint from Wi. Put
Ui = Wi ∩ V (Hi). Then the graph Γ obtained from H1 ∪H2 by identifying X1 with X2

using a bijection is a (|U1| + |U2|)-hypohamiltonian graph. If G1 and G2 are planar,
then Γ is planar, as well.

Proof. Let Xi = {xi1, xi2, xi3}, and denote by Ji the 3-fragment in Gi which is not Hi

and whose set of vertices of attachment is Xi. We call xj ∈ V (Γ) the vertex obtained
when identifying x1j with x2j .

Assume Γ is hamiltonian. Treating Hi as a subgraph of Γ, for appropriate i, j, k
there exists a hamiltonian xjxk-path in Hi. Since Xi ∩Wi = ∅, we have a hamiltonian
xijxik-path in Ji −xiℓ, where j 6= ℓ 6= k. The union of these paths yields a hamiltonian
cycle in Gi, a contradiction.

Since Gi − xij is hamiltonian, there exist hamiltonian xikxiℓ-paths pij in Hi − xij ,
where k 6= j 6= ℓ, for all i, j. Then p1j∪p2j gives a hamiltonian cycle in Γ−xj. Consider
v ∈ V (H1) \ (X1 ∪ U1). Since G1 is k1-hypohamiltonian and v /∈ U1, there exists a
hamiltonian x1jx1k-path p in H1 − v for appropriate j, k. (Note that x1ℓ, j 6= ℓ 6= k,
necessarily lies in p. Assume it does not, and consider the hamiltonian cycle h in G1−v
which contains p. h ∩ J1 is a hamiltonian x1jx1k-path in J1. But then (h ∩ J1) ∪ p1ℓ
gives a hamiltonian cycle in G1, a contradiction.) Then p ∪ p2ℓ, j 6= ℓ 6= k, provides
the desired hamiltonian cycle in Γ− v. The same argument yields a hamiltonian cycle
in Γ− v′ for v′ ∈ V (H2) \ (X2 ∪ U2).

In consequence, Γ does not contain multi-edges: if there exists a pair of vertices
in Γ that are joined by multiple edges, it must be of the form xj , xk, where j 6= k.
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We have shown that Γ− xj and Γ− xk are hamiltonian, so there exists a hamiltonian
xkxℓ-path in H1 − xj and a hamiltonian xjxℓ-path in H2 − xk. These paths together
with the edge xjxk form a hamiltonian cycle in Γ, in contradiction to what was proven
above.

Finally, consider u ∈ U1, where we see U1 as also lying in Γ. Assume Γ−u contains
a hamiltonian cycle h′. Then p′ = h′ ∩ H1 is a hamiltonian x1jx1k-path in H1 − u
for appropriate j, k. (As before, we can show that x1ℓ ∈ V (p′).) p′ together with the
hamiltonian x1jx1k-path in J1−x1ℓ, j 6= ℓ 6= k, we obtain that G1−u is hamiltonian—a
contradiction, since u is exceptional in G1. For a vertex in U2, the proof is the same.
�

Occasionally, we shall refer to the identification from Lemma 2 as “gluing” two
3-fragments. A direct corollary of Lemmas 1 and 2 is that a smallest planar hypo-
hamiltonian graph contains at most one non-trivial 3-cut. In Theorem 5 we present a
stronger result. As a further corollary we obtain a strengthening of [11, Proposition
2.6 (ii)], for which we need the following lemma (which strengthens an observation of
Collier and Schmeichel [9]). In [25], no proof is given—we have seen a proof in the
penultimate paragraph of the proof of Lemma 2.

Lemma 3 (Thomassen [25]). Let G be a hypohamiltonian graph containing a (trivial or
non-trivial) 3-fragment H. Then no two vertices of attachment of H are adjacent. In
particular, every vertex of a triangle in a hypohamiltonian graph has degree at least 4.

Lemma 4. Let G be a hypohamiltonian graph containing a non-trivial 3-fragment H.
Then every vertex of attachment of H has at least two neighbours in H which are not
vertices of attachment of H. Consequently, a vertex lying in a non-trivial 3-cut of a
hypohamiltonian graph has degree at least 4.

Proof. Assume H has among its vertices of attachment a vertex which has at most one
neighbour in H . We apply Lemma 2 to two copies of H . By Lemma 3, we obtain a
hypohamiltonian graph with a vertex of degree at most 2, which is impossible. �

In a graphG, an edge-cutM of G is called trivial (bitrivial) if one of the components
of G−M is K1 (K2).

Corollary 1.

(i) In a planar hypohamiltonian graph, every vertex neighbouring only cubic vertices
is incident with a face of size at least 5.

(ii) A 4-edge-cut in a hypohamiltonian graph is either trivial, bitrivial, or consists of
four independent edges.

(iii) Cubic hypohamiltonian graphs are essentially 4-connected. Thus, a cubic hypo-
hamiltonian graph G contains exactly |V (G)| 3-cuts.

Proof. (i) Let v be a vertex in a planar hypohamiltonian graph G such that every
vertex in N(v) is cubic. Thus, by Lemma 3, v is not incident with a triangle. Assume
that v is incident exclusively with 4-faces Q0, ..., Qk−1, where Qi shall share an edge
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with Qi+1, i mod. k. Denote the vertex in Qi which is not in N [v] with vi, and the
vertex in N(v) ∩N(vi) ∩N(vi+1) with wi.

Let h be a hamiltonian cycle in G − v0. Since w0 and wk−1 are cubic, the path
vk−1wk−1vw0v1 lies in h. As the vertices w1, ..., wk−2 are cubic, as well, we have that
h = vk−1wk−1vw0v1w1v2w2...vk−2wk−2. This implies that V (G) = V (h) ∪ {v0}. But
then G is bipartite, and since hypohamiltonian graphs cannot be bipartite, we have
obtained a contradiction.

(ii) This follows from Lemma 4 and the fact that hypohamiltonian graphs are 3-
connected.

(iii) The first statement follows directly from Lemma 4, and the second statement
from the first statement. �

Note that Lemmas 3 and 4 do not hold for almost hypohamiltonian graphs, as can
be seen in Fig. 1. The three vertices we have emphasised in Fig. 1 provide a 3-cut X
proving our point. We may choose instead of w a neighbour of w, which is not in X—
this shows that the 3-cut need not contain the exceptional vertex to break Lemma 4.
However, in this case Lemma 3 does hold. In fact, we have already seen in the proof of
Lemma 2 that in a k-hypohamiltonian graph, two non-exceptional vertices in a 3-cut
cannot be adjacent. We will look at similar arguments in Lemma 6, in which we prove
useful structural properties of 3-cuts in almost hypohamiltonian graphs. Also note that
a triangle in an almost hypohamiltonian graph, as in the hypohamiltonian case, cannot
contain cubic vertices [12].

w

Fig. 1: The smallest almost hypohamiltonian graph. (That it is indeed the smallest
such graph was proven in [12].) Its exceptional vertex is labeled w.

We now prove the first of three strengthenings of Theorem 1.

Theorem 3. Every planar hypohamiltonian graph contains at least four cubic vertices.

Proof. In this first part of the proof, assume there exists a planar hypohamiltonian
graph G containing exactly one or two cubic vertices—due to Thomassen’s Theorem 1,
we need not treat the case that G contains no cubic vertices. Furthermore, we may
assume that G is the smallest such graph. By Theorem 2, G contains at least two
non-trivial 3-cuts.

Let AH be a non-trivial 3-cut in G, and H be a 3-fragment of G of minimum order
whose set of vertices of attachment is AH . Note that by Lemma 4, the cubic vertices
present in G cannot lie in AH . Take two copies of H and identify their respective
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vertices of attachment using a bijection. By Lemma 2, the resulting graph G′ is planar
(as H is planar) and hypohamiltonian. By Lemma 4, each of the three vertices which
the two copies of H have in common has degree at least 4 in G′. Every other vertex
has the same degree in G′ as in G. By Lemma 1, G′ has fewer vertices than G. Put
Ĥ = V (H) \ AH .

(i) If Ĥ contains no cubic vertices, then G′ is a planar hypohamiltonian graph with
no cubic vertices, in contradiction with Theorem 1.

(ii) If Ĥ contains exactly one cubic vertex, then G′ is a planar hypohamiltonian
graph with exactly two cubic vertices and smaller than G, a contradiction.

(iii) If Ĥ contains exactly two cubic vertices, let H ′ 6= H be the other 3-fragment
of G whose set of vertices of attachment is AH . (H

′ is non-trivial as AH is non-trivial.)

Since G now contains exactly two cubic vertices, and these vertices lie in Ĥ , H ′ contains
no vertices which are cubic in G. By gluing two copies of H ′ we obtain a contradiction
to Theorem 1.

We have shown that a planar hypohamiltonian graph contains at least three cubic
vertices. In this second part of the proof, assume G to be a planar hypohamiltonian
graph containing exactly three cubic vertices. By Theorem 2, G contains a non-trivial
3-cut X . By Lemma 4, X does not contain cubic vertices. One of the 3-fragments
whose set of vertices of attachment is X contains at most one cubic vertex. We call
this 3-fragment H . Applying Lemma 2 to two copies of H , we obtain a planar hypo-
hamiltonian graph with at most two cubic vertices, in contradiction to the first part of
the proof. �

Corollary 2. Let H be a non-trivial 3-fragment of a planar hypohamiltonian graph G
containing exactly k vertices that are cubic in G. Then there are exactly k + 1 cubic
vertices in G if the set of vertices of attachment AH of H forms a trivial 3-cut, and at
least k + 2 cubic vertices in G if AH is a non-trivial 3-cut.

Proof. Let H ′ 6= H be the other 3-fragment whose set of vertices of attachment is
AH . If AH is trivial, then so is H ′, and we obtain that G has k + 1 cubic vertices.
If AH is non-trivial, then so is H ′. Assume G contains at most k + 1 cubic vertices.
Since H has k cubic vertices and AH contains no cubic vertices by Lemma 4, H ′ has
at most one cubic vertex. We apply Lemma 2 to two copies of H ′ and obtain a planar
hypohamiltonian graph which has at most two cubic vertices—in contradiction with
Theorem 3. �

It was recently shown [16] that planar hypohamiltonian graphs containing 30 cubic
vertices exist, see Fig. 2. No planar hypohamiltonian graph with fewer than 30 cubic
vertices is known (and no hypohamiltonian graph with fewer than ten cubic vertices
is known—it is an old question of Thomassen whether hypohamiltonian graphs of
minimum degree at least 4 exist [26, Problem 4]). Narrowing the gap (between 4 and
30) would be a very welcome contribution.

During the 2016 Ghent Graph Theory Workshop on Longest Paths and Longest
Cycles, Thomassen raised the question whether not a certain proportion of vertices
must be cubic in a planar hypohamiltonian graph. We now prove that this is not the
case. To this end, consider the following operation due to Thomassen [27]. Let G be
a graph containing a 4-cycle v1v2v3v4 = C, and consider vertices v′1, v

′
2, v

′
3, v

′
4 /∈ V (G).
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Fig. 2: A plane hypohamiltonian graph containing 30 cubic vertices.

We denote by Th(GC) the graph obtained from G by deleting the edges v1v2, v3v4 and
adding a new 4-cycle v′1v

′
2v

′
3v

′
4 and the edges viv

′
i, 1 ≤ i ≤ 4 (see Fig. 3). If C is an

unspecified 4-cycle in a graph G, when we speak of “the graph Th(GC)” we refer to
(an arbitrary but fixed) one of the two (possibly isomorphic) graphs obtained when
applying the operation Th.

Thomassen mentioned in [27] the following (he gives no proof; a detailed proof for
the planar case can be found in [33], and planarity plays no role in the argument): if G
is a hypohamiltonian graph containing a cubic 4-cycle C, then Th(GC) is hypohamil-
tonian.

v1

v2 v3

v4 v1

v2 v3

v4

v′1
v′2 v′3

v′4

Fig. 3: The operation Th.

The following observation is crucial.

Lemma 5. If G is a hypohamiltonian graph containing a cubic 4-cycle C = v1v2v3v4,
then G′ = Th(GC) + v1v2 + v3v4 is hypohamiltonian.

Proof. With Thomassen’s aforementioned result in mind, we only need to show that G′

is non-hamiltonian. Assume G′ does have a hamiltonian cycle h. Since Th(GC) is non-
hamiltonian, h uses w.l.o.g. v1v2. Put R = G′[{vi, v

′
i}

4
i=1]. We now treat all essentially

different situations. If v1v2 + v3v
′
3v

′
2v

′
1v

′
4v4 ⊂ R ∩ h, we replace v3v

′
3v

′
2v

′
1v

′
4v4 with v3v4

and obtain a hamiltonian cycle in G, a contradiction. In case R∩h = v3v
′
3v

′
2v2v1v

′
1v

′
4v4

or v3v
′
3v

′
4v

′
1v

′
2v2v1v4, replacing this path with v3v2v1v4 we obtain a contradiction. Lastly,

if R∩h = v1v2v
′
2v

′
1v

′
4v

′
3v3v4, we replace this path with v1v2v3v4, and once more we have

a contradiction. �

Let Hn be the family of all planar hypohamiltonian graphs of order n, and V3(G)
the set of all cubic vertices in a graph G.
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Theorem 4.
minG∈Hn

|V3(G)|

n
→ 0 as n → ∞.

Proof. Consider a planar hypohamiltonian graph containing a cubic 4-face, e.g. the
(cubic) 70-vertex graph Γ of Araya and Wiener [33]. Applying k times the operation
described in Lemma 5 to Γ, we obtain a graph of order 70 + 4k containing exactly 70
cubic vertices for all k. �

By Euler’s formula, in a planar hypohamiltonian graph of order n and girth 5, at
least 2n+20

3
vertices are cubic. So for girth 5, asymptotically the ratio of the minimum

number of cubic vertices to the order of the graph is 2/3, in contrast to Theorem 4.
In [16], Jooyandeh et al. constructed the unique smallest planar hypohamiltonian

graph of girth 5. It has 45 vertices, of which five have degree 4 and the remaining 40
are cubic.

We now investigate the application of the operation Th in the inverse direction.

Theorem 5. A smallest planar hypohamiltonian graph G does not contain the graph
shown on the right-hand side of Fig. 3 as an induced subgraph if v′1, v

′
2, v

′
3, v

′
4, and at

least one of the vertices v1, v2, v3, v4 are cubic in G. The assertion also holds in the
family of all planar cubic hypohamiltonian graphs. It also holds if v1v2 or v3v4 (possibly
both) lie in G.

Proof. Let G′ be a smallest planar hypohamiltonian graph, and assume G′ satisfies
the degree conditions stipulated above but also contains the graph from the right-hand
side of Fig. 3 as an induced subgraph. W.l.o.g. let v1 be cubic. Removing from G′ the
vertices v′1, v

′
2, v

′
3, v

′
4 and adding the edges v1v2, v3v4, we obtain the graph G. We treat

G − {v1v2, v3v4} as a subgraph of G′. We denote the cycle v1v2v3v4 as C. Note that
Th(GC) = G′, but we here only know that v1 is cubic—we shall see that this suffices
for our present goals.

Assume G contains a hamiltonian cycle h. If v1v2 does not lie in h, then v1v4 ∈ E(h),
as v1 is cubic. Replacing it with v1v

′
1v

′
2v

′
3v

′
4v4 yields a hamiltonian cycle in G′, a

contradiction. If v1v2 ∈ E(h), then replace v1v2 with v1v
′
1v

′
4v

′
3v

′
2v2, and we obtain once

again a contradiction. Hence G is non-hamiltonian.
Let v ∈ V (G). Denote by hv the hamiltonian cycle in G′ − v. As above, we verify

that for every way hv traverses G′[V (C) ∪ {v′1, v
′
2, v

′
3, v

′
4}], we can modify hv in such

a manner that it provides a hamiltonian cycle in G − v. We have shown that G is
hypohamiltonian—a contradiction, since G is smaller than G′.

Let G′ be defined as above, but now additionally containing the edge v1v2. If v1 is
cubic in G′, by removing v4 from G′ a non-hamiltonian graph is obtained (this follows
from the fact that v1 and v′4 are 2-valent inG′−v4), contradicting the hypohamiltonicity
of G′. If v3 is cubic, removing from G′ the vertices v′1, v

′
2, v

′
3, v

′
4 and adding the edge

v3v4, we obtain the graph G. We can follow the above proof starting from the second
paragraph (C again denoting the cycle v1v2v3v4, and taking into account that now v3
is cubic, but v1 possibly not) and obtain the statement. Very similar arguments can
be used if v3v4 is an edge G′, or if both v1v2 and v3v4 lie in G′. �
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Contrasting Theorem 5, in [36] the author and Zamfirescu recently settled affirma-
tively Chvátal’s 1973 question [8] whether any graph can occur as the subgraph of some
hypohamiltonian graph. In [36] it is also shown that for any outerplanar graph G—a
graph is outerplanar if it possesses a planar embedding in which every vertex belongs
to the unbounded face—, there exists a planar hypohamiltonian graph containing G as
an induced subgraph. However, we cannot include all planar graphs due to an elegant
argument of Thomassen, who proves in [27] that by a classical theorem of Whitney, a
planar triangulation greater than a triangle cannot be an induced subgraph of any pla-
nar hypohamiltonian graph. At this point, no characterisation of those planar graphs
which occur as induced subgraphs of planar hypohamiltonian graphs exists.

Theorem 5 did not use the imposed planarity in its proof, but since we know that
the Petersen graph (which is the smallest hypohamiltonian graph) does not contain the
graph from Fig. 3, this is a moot point. A strengthening of Theorem 5 to “a smallest
planar hypohamiltonian does not contain a quadrilateral containing only cubic vertices”
might be true. McKay [19] showed that a smallest planar cubic hypohamiltonian graph
of girth 5 has order 76, and Araya and Wiener [4] proved that there exist planar cubic
hypohamiltonian graphs of order 70. Since a cubic hypohamiltonian graph cannot
have girth 3, a smallest planar cubic hypohamiltonian graph has girth 4. Thus, the
statement “a smallest planar cubic hypohamiltonian does not contain a quadrilateral
(containing only cubic vertices)” is certainly false.

Let us characterise 3-fragments of hypohamiltonian graphs. In a polyhedron G
embedded in the plane, we call vertices cofacial if they lie on the same face. Following
Chvátal [8], in a graph G a pair of vertices (x, y) is called good in G if there exists a
hamiltonian xy-path in G. H is a non-trivial 3-fragment of a hypohamiltonian graph
iff there exist three pairwise non-adjacent vertices x1, x2, x3 ∈ V (H) such that

(1) for every v ∈ V (H) there exist i, j with i 6= j s.t. (xi, xj) is good in H − v and
(2) (xi, xj) is not good in H for every i, j with i 6= j.

We now focus on non-trivial (i.e. 6= K1,3) 3-fragments of planar hypohamiltonian
graphs, which we will call hypo-fragments in the following. For a characterisation of
such fragments, we need to add to (1) and (2) the condition that x1, x2, x3 are cofacial.
Denote an arbitrary but fixed hypo-fragment by F , and its set of vertices of attachment
by X = {x, y, z}. By Lemma 3, E(F [X ]) = ∅. Adding to F the edges xy, yz, zx, we
obtain a graph B which we will call a closed hypo-fragment. By [7, Lemma 4], B is
a polyhedron, and in the embedding of B—we write “the”, since it is unique due to
a result of Whitney [30]—, xyz is a facial triangle. B contains at least one triangle,
namely B[X ] = xyz, so it has girth 3. Every vertex of a triangle in B has degree at
least 4: for the vertices in X , this follows from Lemma 4, and for all other triangles
this follows from Lemma 3.

F may be hamiltonian or non-hamiltonian, but due to (1), every closed hypo-
fragment is hamiltonian. Identifying, using a bijection, the leaves of K1,3 with the
vertices of attachment of a hypo-fragment F yields a planar hypohamiltonian graph iff
F is hamiltonian, and a planar almost hypohamiltonian graph with a cubic exceptional
vertex iff F is non-hamiltonian. Goedgebeur and the author showed [11, 12] that the
smallest planar hypohamiltonian (planar almost hypohamiltonian) graph has order at
least 23 (22). Subsequently, Goedgebeur verified (personal communication) that there
exist no planar almost hypohamiltonian graphs with a cubic exceptional vertex and
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of order 22. In consequence, the smallest hypo-fragment has order at least 22. The
smallest known planar hypohamiltonian graphs have order 40, see [16]. Thus, gluing
two hypo-fragments (using Lemma 2) cannot help improve this bound, or in other
words:

Theorem 6 (Goedgebeur and Zamfirescu). Every planar hypohamiltonian graph on
at most 40 vertices is essentially 4-connected.

The smallest planar hypohamiltonian graph containing a non-trivial 3-cut has order
at least 41 and at most 67. A 67-vertex graph is constructed by gluing two copies of
the hypo-fragment obtained when deleting the (cubic) exceptional vertex from the 36-
vertex planar almost hypohamiltonian graph G presented in [12]. The graph G was
independently found by Wiener [32]. The smallest hypohamiltonian graph containing
a non-trivial 3-cut has order 15 (see [15, Fig. 3.2]) and is obtained by gluing two copies
of the vertex-deleted Petersen graph.

A smallest planar hypohamiltonian graph has maximum degree at least 4, as Aldred
et al. [3] showed that there is no planar cubic hypohamiltonian graph on 42 or fewer
vertices. The girth of a smallest planar hypohamiltonian graph is 3 or 4, since the
smallest planar hypohamiltonian graph of girth 5 has order 45, as proven by Jooyandeh
et al. [16].

With the same idea as in the proof of Corollary 2, we obtain the following.

Proposition 1. Every hypo-fragment contains, among its vertices which are not ver-
tices of attachment, at least two cubic vertices. In consequence, a hypohamiltonian
graph containing a hypo-fragment has at least two vertices which are cubic.

A brief remark on the old question of Thomassen whether hypohamiltonian graphs
with minimum degree at least 4 exist [26]: From Theorem 1 we can conclude that
such a graph cannot be planar. From Proposition 1 it follows that every (necessarily
non-trivial) 3-fragment of such a graph must be non-planar.

Let Fh (Fnh) be the set of all hamiltonian (non-hamiltonian) hypo-fragments, put

F = Fh∪̇Fnh, and denote the gluing of F, F ′ ∈ F (as in Lemma 2) with F
...F ′, which is

a planar hypohamiltonian graph. In fact, by Theorem 1, every planar hypohamiltonian
graph can be obtained as F

...K1,3 for the appropriate F ∈ Fh, i.e.:

Proposition 2 (Thomassen). Every planar hypohamiltonian graph contains a hamil-
tonian hypo-fragment.

If F ∈ Fnh, then F
...K1,3 is an almost hypohamiltonian graph—these will be dis-

cussed in the next section. We also point out the following direct corollary of Theo-
rem 6.

Corollary 3. In every planar hypohamiltonian graph on at most 40 vertices, every
hypo-fragment is hamiltonian.

Despite the fact that removing a 3-cut from a hypohamiltonian graph will always
yield exactly two components, more than two 3-fragments can be combined simul-
taneously in order to obtain a hypohamiltonian graph. This is a generalisation of
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Thomassen’s [26, Corollary 1] in a different direction than Lemma 2, but its proof
relies on the same idea—we therefore leave it to the reader.

Proposition 3. Let F0, ..., Fk−1, k ≥ 2, be pairwise disjoint 3-fragments of hypohamil-
tonian graphs. Denote the vertices of attachment of Fi with xi1, xi2, xi3. In

⋃k−1

i=0
Fi,

identify all xi2, and identify each xi3 with xi+1,1, indices taken mod. k. The resulting

graph Γ is hypohamiltonian and of order
∑k−1

i=0
|V (Fi)| − 2k + 1. If every Fi is planar,

the identification can be performed such that Γ is planar, as well.

This shows that the maximum degree of a planar hypohamiltonian graph can
become arbitrarily large. (Thomassen [27] proved that there exist hypohamiltonian
graphs of order n and maximum degree 1

2
n − 44. Herz, Duby, and Vigué [14] showed

that the maximum degree is less than 1

2
(n − 3).) It also shows that in planar hypo-

hamiltonian graphs, the ratio of the minimum number of cubic vertices (which increases
linearly) to the maximum number of 3-cuts (which increases quadratically) vanishes
asymptotically.

In the following, in the spirit of Corollary 2, our aim is to show that the minimum
number of cubic vertices in an essentially 4-connected planar hypohamiltonian can be
increased beyond what Theorem 3 gives us under certain circumstances—recall that by
Theorem 6, a smallest planar hypohamiltonian graph is essentially 4-connected. Apart
from this, we believe that Theorem 8 is in itself an interesting observation concerning
the hamiltonicity of essentially 4-connected planar graphs.

Consider a polyhedron G embedded in the plane, let v ∈ V (G), and denote with
F1, ..., Fk the faces incident with v. We call

⋃
Fi a v-patch if, except for two cofacial

neighbours u, w of v, every vertex in N(v) has degree at least 4. We emphasise that
u, v, w may have any degree which is at least 3.

The set of cubic vertices V3(G) of G is a non-obstructive k-set if V3(G) consists of
k−1 (cubic) vertices S ′ and (i) V3(G)\S ′ is a cubic ℓ-path, ℓ ≤ 5, or (ii) V3(G)\S ′ lies
in a v-patch for some v ∈ V (G). (We have chosen this notation since, when counting
cubic vertices, the set V3(G) \S ′ behaves like one additional cubic vertex when dealing
with hamiltonicity—this will become evident in the following paragraphs.) We will
appeal frequently to [7, Theorem 12] by Brinkmann and the author, of which we now
state only the part being used in the present article. For its full form, see [7].

Theorem 7 (Brinkmann and Zamfirescu [7]). Let G be an essentially 4-connected pla-
nar graph and F a face of G containing a vertex v of degree at least 4 with neighbouring
edges uv, vw in the boundary of F . Furthermore, assume that except for u, w—which
can have any degree of at least 3—there are at most two cubic vertices in G. Then
there is a hamiltonian cycle of G containing uvw.

Theorem 8. Essentially 4-connected planar graphs whose set of cubic vertices is a
non-obstructive 3-set are hamiltonian.

Proof. Let G be a graph satisfying the theorem’s conditions. We give the proof
depending on whether we are dealing with a cubic path or a patch, i.e. case (i) or (ii)
as defined above.

(i) Let P = v1...v5 be a cubic 5-path in G. We now treat the three essentially
different situations.
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Case 1: There exists a face F in G such that V (P ) ⊂ V (F ). We construct the
graph G′ by adding to G a vertex v in the interior of F and joining it to all vertices in
V (F ). Theorem 7 yields that there exists a hamiltonian cycle in G′ containing v1vv2.
Replacing v1vv2 with v1v2, we obtain a hamiltonian cycle in G.

Case 2: No four vertices among v1, ..., v5 are cofacial. Construct G
′ by adding to G

the edges v1v3, v2v4, and v3v5. Note that G′ is planar. Theorem 7 implies that there
exists a hamiltonian cycle in G′ containing v2v3v4. Since the edges v1v3, v2v4, and v3v5
are not contained in this cycle, we have shown that G is hamiltonian, as well.

Case 3: v1, v2, v3, v4 are cofacial, but v1, ..., v5 are not. We separate between two
cases: In Subcase 3.1, v1 and v4 are non-adjacent. Denote the neighbour of v4 not in
P with w. v1, v2, v3, v4, and w lie on the same face F . We construct the graph Gv

by adding to G a vertex v in F and joining it to all vertices in V (F ). Furthermore,
we denote with G′ the graph obtained from Gv by removing the edge v4w and adding
the edge vv5. Gv and G′ are planar. It is well-known that Gv is 3-connected, since
|V (F )| ≥ 3. It remains to prove that G′ is 3-connected. For every x, y ∈ V (Gv) \ {v},
x 6= y, by Menger’s Theorem there exist three pairwise internally disjoint xy-paths in
G—two paths are internally disjoint if the intersection of their vertex sets coincides
with their end-vertices—, the union of which we will call P . If v4w /∈ E(P ), we are
done, so assume v4w ∈ E(P ). We replace in P the edge v4w with v4vw and obtain
the desired three paths in G′. Now we show that there exist three pairwise internally
disjoint vz-paths in G′ for every z ∈ V (G′) \ {v}. Since Gv is 3-connected, there exist
three pairwise internally disjoint vz-paths in Gv. Assume one of these paths, which
we call Q, uses v4w. If, on Q, v4 (w) is closer to z than w (v4), then we replace the
subpath of Q from v to v4 (w) with vv4 (vw), and are finished. It is now not difficult
to show that G′ is in fact essentially 4-connected. We apply Theorem 7 and obtain a
hamiltonian cycle in G′ using v4vv5. Replacing v4vv5 with v4v5 we have shown that G
is hamiltonian.

In Subcase 3.2, v1 and v4 are adjacent. In this situation, v1v2v3v4 is a quadrilateral
face F of G. Furthermore, v1, v4, v5 lie on the same face F ′. We construct the planar
graph G′ by adding to G a vertex v in F and joining it to all vertices in V (F ), adding
a vertex v′ in F ′ and joining it to v1, v, v4, v5, and removing the edge v1v4. As above we
show that G′ is essentially 4-connected. We apply Theorem 7 and obtain a hamiltonian
cycle h of G′ containing v′vv4. Clearly v′v4 /∈ E(h). If v1v

′vv4 ⊂ h (v5v
′vv4 ⊂ h), then

we replace v1v
′vv4 (v5v

′vv4) with v1v4 (v5v4) and obtain a hamiltonian cycle in G.
If P is a cubic k-path with k ≤ 3, all vertices of P are cofacial and we are in the

situation of Case 1. If P is a cubic 4-path and not all vertices of P are cofacial (if they
are, we are in Case 1), we use the argument from Case 2.

(ii) Denote with F the face containing u, v, and w. We construct a graph G′ by
adding to G as many edges emanating from v as possible, but excluding vertices in
V (F ), such that no multiple edges occur andG′ is planar. We call the set of added edges
E . If v is not cubic in G we use Theorem 7 and obtain that there exists a hamiltonian
cycle in G′ containing uvw. The same hamiltonian cycle exists in G′ − E = G, and we
are done. Now assume v is cubic in G. We denote its neighbour which is neither u
nor w by x. If G[{x, v, w}] and G[{x, u, v}] are not both triangles, we are finished as
well, so suppose both are triangles. Neither u nor w are cubic in G, as otherwise we
would have a non-trivial 3-cut. But in this case we may apply directly (i.e. without
modifying G) Theorem 7 and obtain that there exists a hamiltonian cycle in G. �
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From Theorem 8 we can directly deduce that an essentially 4-connected planar
graph whose cubic vertices are a non-obstructive 3-set cannot be hypohamiltonian.
For example, let G be an essentially 4-connected planar graph. If V3(G) consists of
seven vertices, five of which induce a path, then G cannot be hypohamiltonian.

We end this section with a brief discussion of a natural question raised by Fabrici
and Madaras during the Cycles and Colourings Workshop in 2011: does every planar
hypohamiltonian graph contain adjacent cubic vertices? Note that the graph from
Fig. 2 contains a cubic vertex v (the bottom right vertex) with no cubic neighbours—
vertices such as v have the property that removing them from a hypohamiltonian
polyhedron yields a (hamiltonian) polyhedron, whence, they are not contained in any
3-cut.

Let the weight of an edge be the sum of the degrees of its end-vertices. In his talk
entitled “Local structure of planar hypohamiltonian graphs” held at the “Kolloquium
über Kombinatorik” in Ilmenau (Germany) in 2013, Fabrici presented the result that
every planar hypohamiltonian graph contains an edge of weight at most 9. From a
theorem of Lebesgue [17] it follows that every planar hypohamiltonian graph of girth
at least 4 contains an edge of weight at most 8, and that planar hypohamiltonian
graphs of girth 5 contain a cubic 4-path.

Let µ be the minimum number of pairs of adjacent cubic vertices in a planar hypo-
hamiltonian graph. Assume µ = 1, and let G be a planar hypohamiltonian graph with
exactly one pair of adjacent cubic vertices v, w. Let H be the non-trivial 3-fragment of
G whose set of vertices of attachment is N(v). Gluing two copies of H via Lemma 2,
we obtain a planar hypohamiltonian graph with no adjacent cubic vertices, so µ = 0,
a contradiction. Thus µ 6= 1.

3 Planar almost hypohamiltonian graphs

It is not difficult to prove that there exist planar 1-hamiltonian graphs with minimum
degree 4—think of triangulations—, so we cannot replace in Theorem 1 the condition of
non-hamiltonicity with hamiltonicity. Thomassen’s question whether hypohamiltonian
graphs with minimum degree at least 4 exist remains open [26], so we do not know
whether the condition of planarity can be dropped in Theorem 1. We do know that
almost hypohamiltonian graphs with minimum degree 4 (and even 4-connected such
graphs) exist [34]. Problem 5 in [34] asks whether every planar almost hypohamiltonian
graph contains a cubic vertex. If the exceptional vertex of the graph is cubic, the
following stronger statement containing the affirmative answer is a direct corollary
of Theorem 3. Its proof, which we leave to the reader, is based on Lemma 2 and
Proposition 1, and uses the same idea of gluing 3-fragments as we have already seen.

Proposition 4. Let G be a planar almost hypohamiltonian graph. If the exceptional
vertex w of G is cubic, and N(w) contains k cubic vertices, then G contains at least
k + 3 cubic vertices.

We now treat the case when the exceptional vertex is not cubic. We will use tacitly
the fact that in a graph of connectivity 3, every vertex of any 3-cut has at least one
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neighbour which is not a vertex of attachment, in every 3-fragment. Despite what was
said concerning Lemma 4, we do have the following.

Lemma 6. Let G be an almost hypohamiltonian graph with exceptional vertex w and H
a 3-fragment in G with set of vertices of attachment AH . If w /∈ AH , H is non-trivial,
and either w /∈ V (H) or w ∈ V (H) has no neighbour in AH , then every vertex in AH

has at least two neighbours in H \ AH .
If w ∈ AH , we put AH = {u, v, w}, and the following hold.

(i) uv /∈ E(G).

(ii) If H is non-trivial, then u and v each have at least two neighbours in H \ AH .

(iii) If w has exactly one neighbour in H (which must lie in H \AH), then there is no
hamiltonian uv-path in H − w.

(iv) If vw ∈ E(G) and uw /∈ E(G), then G+ uw is almost hypohamiltonian, as well.

Proof. Denote by H ′ 6= H the other 3-fragment in G whose set of vertices of attachment
is AH . For the first statement, we argue as in the proof of Lemma 4.

(i) Assume uv ∈ E(G). SinceG−u andG−v are hamiltonian, there is a hamiltonian
vw-path (hamiltonian uw-path) in H−u (H ′−v). These paths together with the edge
uv give a hamiltonian cycle in G, a contradiction.

(ii) Assume v has exactly one neighbour in H \ AH which we call z. G − z is
hamiltonian, so there exists a hamiltonian uw-path in H ′. Furthermore, there is a
hamiltonian uw-path in H − v. The union of these paths is a hamiltonian cycle in G,
a contradiction.

(iii) Denote by z′ the neighbour of w in H \AH . Since G− z′ is hamiltonian, there
exists a hamiltonian uv-path in H ′. Since G− w is non-hamiltonian, there cannot be
a hamiltonian uv-path in H − w.

(iv) Assume G + uw contains a hamiltonian cycle h. Since G is non-hamiltonian,
uw ∈ E(h). W.l.o.g.H ′−w contains a hamiltonian uv-path. Since G−v is hamiltonian,
there exists a hamiltonian uw-path in H − v. These paths together with the edge vw
provide a hamiltonian cycle inG, a contradiction. We also need to verify thatG+uw−w
is non-hamiltonian, but this is certainly the case, since G+uw−w = G−w and G−w
is non-hamiltonian. �

Proposition 5. Let G1 and G2 be disjoint almost hypohamiltonian graphs. For i ∈
{1, 2}, let Gi have exceptional vertex wi, and let there be a non-trivial 3-fragment Hi

in Gi with set of vertices of attachment Xi such that wi ∈ Xi and E(Gi[Xi]) 6= ∅. In
G1∪G2, identifying X1 with X2 using a bijection such that w1 is identified with w2, and
deleting all but one edge between adjacent vertices, we obtain an almost hypohamiltonian
graph Γ whose exceptional vertex is the vertex obtained when identifying w1 with w2.
If G1 and G2 are planar, then so is Γ.

Proof. Let Xi = {xi1, wi, xi2}, and denote by Ji the 3-fragment in Gi which is not Hi

and whose set of vertices of attachment is Xi. We call xj ∈ V (Γ) the vertex obtained
when identifying x1j with x2j , and w the vertex obtained when identifying w1 and w2.

Claim. There is no hamiltonian xi1xi2-path in Hi − wi.
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Proof of the Claim. Assume there is such a path p. As E(Gi[Xi]) 6= ∅, due to
Lemma 6 (i), x1w or x2w lie in E(Γ), say the former. Since Gi is almost hypo-
hamiltonian, there exists a hamiltonian path p′ in Ji − xi1 with end-vertices wi, xi2.
p ∪ p′ + xi1wi is a hamiltonian cycle in Gi, a contradiction.

Assume Γ is hamiltonian. Treating Hi as a subgraph of Γ, for appropriate i there
exists a hamiltonian x1w-path in Hi, which we deal with as in the proof of Lemma 2, or
a hamiltonian x1x2-path; in this caseHj−wj , i 6= j, contains a hamiltonian xj1xj2-path.
But this is impossible by the above claim.

Since Gi − xij is hamiltonian, there exists a hamiltonian xikwi-path pij in Hi − xij ,
where k 6= j, for all i, j. Then p1i ∪ p2i gives a hamiltonian cycle in Γ − xi. Consider
v ∈ V (H1) \ X1. Using the claim, we have a hamiltonian w1x1i-path p in H1 − v for
appropriate i. (Note that x1j , i 6= j, necessarily lies in p. Assume it does not, and
consider the hamiltonian cycle h in G1−v which contains p. h∩J1 is a hamiltonian path
in J1 with the same end-vertices as p, i.e. w1, x1i, but containing the vertex x1j , i 6= j.
We then have that (h ∩ J1) ∪ p1j , i 6= j, is a hamiltonian cycle in G1, a contradiction.)
Then p ∪ p2j , i 6= j, gives the desired hamiltonian cycle in Γ− v. The same argument
yields a hamiltonian cycle in Γ− v′ for v′ ∈ V (H2) \X2.

Due to the claim, Γ− w cannot be hamiltonian. �

In the above proposition, the condition “E(Gi[Xi]) 6= ∅” is annoying, but we were
not able to prove the statement without it. This is due to the fact that the statement
becomes false without the requirement: in [12, Fig. 3] an almost hypohamiltonian
graph is shown; it has a non-trivial 3-cut X containing the exceptional vertex. Gluing
two copies of the smaller of the two 3-fragments whose set of vertices of attachment is
X such that the exceptional vertices are identified with each other, we obtain a graph
with minimum degree 2, which cannot be almost hypohamiltonian.

In the following, we need [7, Lemma 14]—we reproduce here only the part of it
relevant to our current pursuit.

Lemma 7 (Brinkmann and Zamfirescu [7]). Consider a polyhedron G with at most
one 3-cut, and let G contain a triangular face xyz with deg(y) ≥ 4. Then there is a
hamiltonian xz-path in G containing no edges of xyz.

Theorem 9. Every planar almost hypohamiltonian graph contains a cubic vertex which
is not the exceptional vertex.

Proof. In the light of Proposition 4, let G be a planar almost hypohamiltonian graph
with exceptional vertex w, and assume that G has minimum degree at least 4.

If there exists a 3-cut X in G such that w /∈ X , denote by H the 3-fragment
(which is necessarily non-trivial, since there are no trivial 3-cuts) whose set of vertices
of attachment is X and which does not contain w. Applying Lemma 2 to two copies of
H yields a planar hypohamiltonian graph containing no cubic vertices, contradicting
Theorem 1.

So we may assume that every 3-cut in G contains w. [7, Lemma 5] states that G
has a 3-cut Y = {u, v, w} such that at least one closed hypo-fragment B of G whose set
of vertices of attachment is Y has no 3-cuts, i.e. that it is 4-connected or isomorphic to
K4. The latter case is impossible here, since G contains no cubic vertices. As w ∈ Y ,
Lemma 6 (ii) implies that u has degree at least 4 in B. By Lemma 7, there is a
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hamiltonian vw-path p in B containing no edge in E(B[Y ]). Let H ′ be the 3-fragment
6= H in G whose set of vertices of attachment is Y . Since G is almost hypohamiltonian
and u is non-exceptional, there exists a hamiltonian vw-path p′ in H ′ − u. We are led
to a contradiction, since p ∪ p′ is a hamiltonian cycle in G. �

We have obtained the second strengthening of Thomassen’s Theorem 1:

Corollary 4. Let G be a planar non-hamiltonian graph containing a vertex w such
that G − v is hamiltonian for every v ∈ V (G) \ {w}. Then G contains a cubic vertex
which is not w.

The smallest known planar almost hypohamiltonian graph has order 31 and was
discovered by Wiener [32]. Its exceptional vertex has degree 4. Goedgebeur and the
author [12] showed that the smallest planar almost hypohamiltonian graph has order
at least 22.

Corollary 5. Every planar almost hypohamiltonian graph contains a hamiltonian 3-
fragment.

A graph G is hypotraceable if G is non-traceable (i.e. contains no hamiltonian path)
and G − v is traceable for every v ∈ V (G). The following result of Wiener together
with Corollary 4 provides a first step in establishing an analogue of Theorem 1 for
hypotraceable graphs. Note that every 2-edge-cut in a hypotraceable graph consists of
two independent edges.

Theorem 10 (Wiener [32]). If G is a hypotraceable 2-fragment containing an edge-cut
{e1, e2}, and G1 and G2 are the components of G−{e1, e2}, then G1 and G2 are vertex-
deleted hypohamiltonian or almost hypohamiltonian graphs. In both cases the deleted
vertex must be cubic, and in the latter case the exceptional vertex is being deleted.

Corollary 6. Each 2-fragment of edge-connectivity 2 in a planar hypotraceable graph
contains a cubic vertex.

Let us briefly discuss 2-hypohamiltonian graphs, since the behaviour with respect
to cubic vertices changes from the 1-hypohamiltonian to the 2-hypohamiltonian case.
As described in [34], it is easy to see that there exists a planar 2-hypohamiltonian graph
with no cubic vertex: take a 4-cycle v1v2v3v4, add the vertex v5, and the edges v1v3,
v1v5, and v3v5. Thus, a 2-hypohamiltonian analogue of Theorem 9 would certainly
be false if we would not demand 3-connectedness. Whether every 2-hypohamiltonian
polyhedron contains a cubic vertex is unknown. In a similar vein, it would be interesting
to determine a small integer k such that there exists a k-hypohamiltonian polyhedron
of minimum degree at least 4.

4 Hypohamiltonian graphs with crossing number 1

An informal definition of the crossing number of a graph G follows. Consider all
drawings of G in the plane, and choose one with the fewest edge crossings. The number
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of crossings in this drawing is the crossing number cr(G) of G. For a rigorous definition
and a survey, see Székely’s work [23].

Lemma 8 (Brinkmann [5]). Let G be a 4-connected graph with crossing number 1.
Denote by e and e′ the crossing edges. Then G− {e, e′} is hamiltonian.

Proof. Let G be a 4-connected graph with crossing number 1. We denote its crossing
edges by aa′ and cc′. We apply the transformation shown in Fig. 4 and obtain a planar
graph G′.

a

c a′

c′ a

c a′

c′

b b′

Fig. 4: Transforming a crossing.

Let us show that G′ is 4-connected by using Menger’s Theorem and proving that for
every pair of vertices of G′ there exist four pairwise internally disjoint paths between
them. Let v, w ∈ V (G′) \ {b, b′}. We see G − {aa′, cc′} as subgraph of G′. Denote
the union of four pairwise internally disjoint vw-paths in G with P . If aa′, cc′ /∈ P , we
are done. If aa′ ∈ P and cc′ /∈ P , replace in P the edge aa′ with aba′, and we have
four pairwise disjoint vw-paths in G′. (We proceed in the same manner if aa′ /∈ P
and cc′ ∈ P .) If aa′, cc′ ∈ P , replace aa′ and cc′ with abc and a′b′c′ or ab′c′ and a′bc
(depending on P ), respectively, and we are finished as well.

We now show that there are four pairwise internally disjoint bb′-paths in G′. Three
such paths are given by bb′, bab′, and ba′b′. Since G is 4-connected, there exists a
cc′-path Q in G which is not cc′ and which uses neither a nor a′. Treating Q as lying
in G′, we obtain our fourth bb′-path by considering bc+Q + c′b′.

Finally, let v ∈ V (G′) \ {b, b′}. We prove that there are four pairwise internally
disjoint vb-paths in G′. It is well-known that for a vertex β /∈ V (G), the graph G′′ =
(V (G)∪{β}, E(G)∪{aβ, cβ, a′β, c′β}) is 4-connected, as well. There exist four pairwise
internally disjoint vβ-paths Pa, Pc, Pa′ , Pc′ in G′′, where the index denotes the vertex
through which β is reached. Then

(Pa − aβ) + ab, (Pc − cβ) + cb, (Pa′ − a′β) + a′b, (Pc′ − c′β) ∪ c′b′b

are the four desired paths in G′. (The same argument can be used to prove that there
are four pairwise internally disjoint vb′-paths in G′.)

Thomas and Yu [24] showed that 4-connected polyhedra are 2-hamiltonian. Thus
G′ − {b, b′} = G− {aa′, cc′} is hamiltonian. �

Using the same approach, and applying [7, Theorem 12], we can obtain the following
result which is stronger than Lemma 8. However, we skip here the proof, as Lemma 8
is sufficient for our purposes.

Theorem 11 (Brinkmann [5]). Let G be a 4-connected graph with crossing number 1.
Denote by e and e′ the crossing edges. Then G contains a hamiltonian cycle through
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neither e nor e′, a hamiltonian cycle through e but not e′, as well as a hamiltonian
cycle through e′ but not e. Consequently, G contains at least three hamiltonian cycles.

Lemma 9. Consider a hypohamiltonian graph G with crossing number 1 containing a
3-cut X. Let H and H ′ be the 3-fragments whose set of vertices of attachment is X.
Then H or H ′ is planar.

Proof. Due to Lemma 3, H and H ′ are edge-disjoint induced subgraphs of G. Assume
H and H ′ are non-planar. By Kuratowski’s Theorem, each contains a Kuratowski
subgraph, i.e. a subgraph homeomorphic to K3,3 or K5. Thus G contains at least
two edge-disjoint Kuratowski subgraphs. G has crossing number 1, so we can delete
one edge from G such that the graph G′ we obtain is planar. In at least one of the
Kuratowski subgraphs no edge was deleted—but this contradicts the planarity of G′.
Therefore H or H ′ must be planar. �

We now present the third extension of Theorem 1.

Theorem 12. Every hypohamiltonian graph with crossing number at most 1 contains
a cubic vertex.

Proof. For graphs with crossing number 0, this is Thomassen’s Theorem 1. Let G
be a hypohamiltonian graph with crossing number 1 and minimum degree at least 4.
By Lemma 8, G has connectivity 3. By Lemma 9, one of the (necessarily non-trivial)
3-fragments of G, which we call H , is planar. Consider H and glue it with a copy of
itself as described in Lemma 2. We obtain a planar hypohamiltonian graph with no
cubic vertices, in contradiction with Theorem 1. �

In the light of above arguments, extending Tutte’s Theorem to 4-connected graphs
with crossing number 2 seems within reach. However, Grünbaum and Nash-Williams
independently conjectured that every 4-connected toroidal graph is hamiltonian—this
has proven to be a very challenging problem—, and on the double torus there even
exist 4-connected triangulations that are non-hamiltonian.
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[13] B. Grünbaum. Vertices Missed by Longest Paths or Circuits. J. Combin. Theory,
Ser. A 17 (1974) 31–38.

[14] J. C. Herz, J. J. Duby, and F. Vigué. Recherche systématique des graphes hy-
pohamiltoniens, in: Theory of Graphs: International Symposium, Rome, 1966,
pp. 153–159. Gordon and Breach, New York, and Dunod, Paris, 1967.

[15] D. A. Holton and J. Sheehan. The Petersen Graph, Chapter 7: Hypohamiltonian
graphs, Cambridge University Press, New York, 1993.
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