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Abstract.

We give an affirmative answer to an old conjecture proposed by Ludwig Danzer: there is a

unique dissection of the square into five congruent convex tiles.
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Introduction and notation

In the eighties of the last century, Ludwig Danzer conjectured in several conferences that there

is a unique dissection of the square into five congruent parts—see Figure 1. In its most general

setting, the conjecture asks the parts to be finite unions of closed topological discs.

Danzer formulated his conjecture for the case that the parts are convex, and for the general

case as well. We give here an affirmative answer for the case where the parts are convex.

Dissecting convex and other bodies was a frequent occupation of mankind since prehistorical

times. We make no attempt here to evoke those efforts and achievements in arts (like painting

and cuisine) and sciences, throughout the millennia. As just one example of relatively recent

work, we mention Archimedes’ “Ostomachion” [1], because he dissected precisely the square.

For many of the mathematical variants, we recommend Grünbaum and Shephard’s authori-

tative book [3], but have to mention the existence of several other important books and surveys

in this area.

Danzer’s conjecture can be obviously generalized to one in which dissection into n congruent

tiles is required, where n is any prime number not less than 3 (see Problem 4). The case n = 3

has been solved by Maltby [5].

For points p, q ∈ IR2, let pq denote the line-segment from p to q, including p and q, and

let |pq| be its length. For M ⊂ IR2, diamM , intM , bdM , A(M) denote its diameter, interior,

boundary, area, respectively. The convex hull of the finite set {a1, ..., an} ⊂ IR2 will be denoted

by a1...an. The circle with centre x and radius r will be denoted by C(x, r).

1



Figure 1

Consider the square Q = [0, 1]2.

A compact convex set K ⊂ IR2 is called here a tile, if Q is the union of five congruent copies

of K such that any two of them are either disjoint or have just boundary points in common.

Throughout the paper, these five tiles will be denoted by K1, ...,K5. Obviously, K must be a

convex polygon. Indeed, since the convex tiles Ki form a tiling of the square, the intersection of

two tiles is either empty, or a single point, or a line-segment; so K has a boundary consisting of

finitely many line-segments, and hence is a polygon. We will call here this particular dissection

a tiling.

The boundaries of the five tiles form a graph, which has as vertices the vertices of the tiles

and as edges their sides or parts of them, joining those vertices. We use the same term of tiling

when referring to this graph.

Let v1 = (0, 1), v2 = (1, 1), v3 = (1, 0), v4 = (0, 0), and put v5 = v1. So Q has vertices vi and

sides vivi+1 (i = 1, ..., 4). Put Q∗ = bdQ \ {v1, v2, v3, v4}.
The main steps of our proof of Danzer’s conjecture are these: first, we eliminate the possi-

bility that the tiles are triangles. Then we eliminate several topologically different cases of tiling

the square Q. Third, we show that some edge of Q must contain no vertex of the tiling, which

provides the strong geometric property of the tiles of having a side of length 1. Finally, we are

led to the obvious tiling.

Preparation

Lemma 1. K is not a triangle.

Proof. This is a direct consequence of Monsky’s theorem saying that there is no tiling of

the square into an odd number of triangles of equal areas [6]. Although the proof of Monsky’s

theorem is elegant and not too long, we give here a very simple argument for (the weaker)

Lemma 1.

Suppose there exists a tiling of Q into five congruent triangles. The angle sum of the five

triangles is 5π. The sum of the angles in the four corners of Q is 2π. Therefore, further vertices
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must account for precisely 3π—thus, they are at least two and at most three. Choose the points

p = (3/5, 3/5), q = (0, 3/5).

Claim 1. The triangle v1v2p cannot be a tile. Indeed, suppose it is. We have ∠v1pv2 > π/2,

∠pv2v1 = π/4, ∠v2v1p = arctan2
3 .

Then another tile must have a vertex at v1. Its angle there can only measure π/4 or arctan2
3 .

Therefore there must be a further tile with vertex at v1. The remaining angle at v1 for this tile

is at most
π

2
− 2 arctan

2

3
< arctan

2

3
,

so this is impossible. See Figure 2(a).

Figure 2

Claim 2. The triangle v1v2q cannot be a tile. Indeed, suppose it is. We have |qv1| = 2/5,

|v1v2| = 1, |v2q| =
√
29/5. Then |qv4| = 3/5. As a line-segment of length 3/5 is not a union of

line-segments of length at least 2/5 with pairwise disjoint relative interiors, Claim 2 is true.

If, out of the at most three additional vertices of the tiling, i lie in intQ, then at most 3− i

of them belong to Q∗, and at least 4− (3− i) = i+ 1 sides of Q are left without such vertices.

So, these sides are sides of triangles of the tiling, and therefore they require the existence of a

vertex on each of some i+ 1 lines among the four lines x = 2/5, x = 3/5, y = 2/5, y = 3/5, see

Figure 2(b). The points in bdQ lying on these lines cannot be used, by Claim 2.

Since there is one more line than vertices in intQ, two of the i + 1 lines must be served by

the same interior vertex (or, for i = 0, there is no suitable vertex). This amounts to using a

vertex “like” p, which is, however, excluded by Claim 1. �

Lemma 2. A tiling as in Figure 3(a) is impossible.

Proof. Indeed, since one of the tiles is a quadrilateral, all must be quadrilaterals, so we must

have the collinearities shown in Figure 3(b).
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Figure 3

Suppose first that the angle of K2 at a1 is α < π/2. Then K1 has at a1 an angle of π − α,

and K has two right angles, a third one measuring α and a fourth one measuring π − α. This

consequently holds for the tiles K1, ...,K4, whence K5 is a rectangle, which is false.

Now, suppose that the angle of both K1 and K2 at a1 is π/2, see Figure 4.

Figure 4

Assume that ∠a1sa4 ̸= π/2. Since K1 is congruent with K2, |v1a1| = |a1v2| = 1/2. Since K1

is congruent with K4 and ∠sa4v4 ̸= π/2, we have |v4a3| = 1/2. But this does not allow K5 to

exist!

Assume now that ∠a1sa4 = π/2. Then the tiles are rectangles. If a, b are their sides, they

must satisfy the conditions a + b = 1 and ab = 1/5. With the solutions, which are unequal,

we have congruent tiles K1, ...,K4 (containing v1, ..., v4, respectively), but the resulting K5 is a

square (of side-length b− a). �

Notice the equiangular solution obtained in the case studied last.

Lemma 3. A tiling as in Figure 5(a) is impossible.

Proof. Indeed, all tiles must be quadrilaterals, so the situation is as in Figure 5(b).

Suppose α = ∠wa1v1 ̸= π/2. Then the angles of K measure π/2, π/2, α, π − α. Thus, the

angle of K2 at a2 must be α or π/2. If it is α, K has two opposite right angles. Hence, in K1,
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(a) (b) (c)

Figure 5

∠a1wa4 = π/2, where w is the neighbour of a4 in intQ, and in K4, ∠a3wa4 = π/2, which implies

that a1, w, a3 are collinear, which is wrong (because swa3u must be a quadrilateral).

Hence ∠v2a2s = π/2, ∠a1sa2 = α, ∠a1wa4 = π − α, ∠v1a4w = π/2, ∠a4wa3 = π − α,

∠wa3v4 = α, ∠v3a3u = α, ∠a3us = α.

Therefore ∠swa3 = ∠wa3u = π/2, which holds only if 2α = π/2.

Thus α = π/4 leads to the nice equiangular tiling of Figure 5(c). But it is easily seen that

|a1s| ≠ |a1w|, and the tiles cannot be congruent. �

Lemma 4. A tiling as in Figure 6 is not possible (including the case a1 = a′1).

Proof. Suppose w.l.o.g. that |v4a3| ≥ 1/2. Since diamK4 = diamK5 ≥ |a1a3| ≥ 1, we have

|a3a4| ≥ 1 or |v4s| ≥ 1 or |a3s| ≥ |a1a3|. Notice that the diameter of K4 cannot be realized by

a4s, because otherwise |a4s| ≥ |v4s| implies diamK1 ≥ |v1s| > |a4s| = diamK4.

Claim. |a3v4| >
√
3/2.

Figure 6

Indeed, assume |a3v4| ≤
√
3/2.

In the case |a3a4| ≥ 1, we have |a4v4| =
√

|a3a4|2 − |a3v4|2 ≥ 1/2. It is elementary to

calculate that, for 1/2 ≤ |a3v4| ≤
√
3/2, we have A(a3a4v4) ≥

√
3/8 > 1/5, which is absurd.

In the case |v4s| ≥ 1, the point s lies on C(v4, 1) or outside it. Let s′ be the intersection of

C(v4, 1) ∩Q with the line through s parallel to v4v1.
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Consider the points β = (3/5, 4/5), γ = (
√
3/2, 1/2),m = (1/2, 0), see Figure 7.

Figure 7

If s′ belongs to the (relative) interior of the arc ṽ1β of C(v4, 1) ∩ Q from v1 to β, then

A(a3sv4) ≥ A(a3s
′v4) > A(mβv4) = 1/5, which is impossible.

If s′ belongs to the arc β̃γ of C(v4, 1) ∩Q, then

A(K1 ∪K4) ≥ A(v1sa3v4) = A(v1sv4) +A(a3sv4) ≥ A(v1βv4) +A(mγv4)

=
1

2
· 3
5
· 1 + 1

2
· 1
2
· 1
2
=

17

40
>

2

5
,

which is false.

If s′ belongs to the arc γ̃v3 of C(v4, 1) ∩Q, we either have ∠sa3v4 > π/2, or ∠sa3v4 ≤ π/2.

Consider the point s∗ ∈ v1v2 such that s ∈ s∗a3.

If ∠sa3v4 > π/2, we have

A (K2 ∪K3 ∪K5) ≤ A (a3v3v2s
∗) =

|a3v3|+ |s∗v2|
2

≤
1
2 + 1−

√
3
2

2
<

3

5
.

If ∠sa3v4 ≤ π/2, consider the point γ∗ ∈ v1v2 such that γ ∈ γ∗a3. We have

A(K2 ∪K3 ∪K5) ≤ A(a3v3v2s
∗) ≤ A(a3v3v2γ

∗) = 1−
√
3

2
<

3

5
.

In both situations we obtained contradictions.

In the last case, |a3s| ≥ |a1a3|, from inspecting the triangle a1sa3 it follows that ∠a1sa3 <

π/2. We saw already that |a3a4| < 1. Hence |a3s| > |a3a4|, whence, similarly, ∠a4sa3 < π/2.

But then, in K1, ∠a1sa4 > π, which contradicts the convexity of K1. So the Claim is completely

verified.

We continue the proof. Since A(K2 ∪K3) = 2/5, we must have A(v2v3a3a
′
1) ≥ 2/5, which

together with |a3v4| >
√
3/2 implies |v2a′1| >

√
3
2 − 1

5 .

Then

diamK5 ≥ |a3a′1| =
√

1 + (|v2a′1| − |v3a3|)2.

As |v2a′1| − |v3a3| >
√
3− 6

5 > 1
2 , we have diamK >

√
5/2.
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Since u ∈ v2v3a3a
′
1, |v2u| <

√
5/2. This implies that diamK2 = |a2a′1| >

√
5/2. This yields

A(v2a2a
′
1) ≥ 1/4, and consequently A(K2) ≥ 1/4, which is wrong. �

Lemma 5. A tiling as in Figure 8 is not possible.

Figure 8

Proof. Indeed, sinceK5 must be a quadrilateral, a1, s, a
′
3 must be collinear, and a′1, u, a3 must

be collinear, too. Thus, K has two opposite sides of length at least 1. But this is impossible for

K1, as both |v1a1| and |v1a4| are less than 1. �

Result

Here we prove the result of this paper, which confirms Danzer’s conjecture for convex tiles.

Theorem. The tiling of the square with five congruent convex tiles shown in Figure 1 is

unique.

Proof. In the whole proof we use the fact that the tiles are not triangles, by Lemma 1.

Suppose that each side of Q contains some vertex different from the vi’s.

There can only be at most four vertices interior to Q. We argue combinatorially.

Let e be the number of interior edges, i that of the interior vertices, and b that of boundary

vertices. Each face has at least four sides, each interior vertex has degree at least 3. By counting

in the standard two ways the double of the number of interior edges, we get

2e ≥ 20− b, 2e ≥ 3i+ b− 4.

By Euler’s formula,

(i+ b)− (e+ b) + 6 = 2.

7



We obtain 2 ≤ i ≤ 4 for b = 8. The case i = 4 appears in the situation of Figure 3(a), eliminated

by Lemma 2. We also obtain 1 ≤ i ≤ 2 for b = 10, realized in Figure 8, and treated by Lemma 5.

Otherwise we have 2 ≤ i ≤ 3.

Case I. Each side vivi+1 contains exactly one vertex ai (i = 1, ..., 4; v5 = v1) in its relative

interior.

If no edge starts at some vi, then there is a tile with no edge on bdQ, contrary to Lem-

mas 2, 3, 4.

Hence, assume an edge v1s exists. Now, asking that more than one interior edge starts at

the same vi or ai leads to no solution (respecting Lemma 1).

Denote by u the neighbour of a1 different from v1 and v2.

Figure 9

Let θ = ∠a1v1s.
Taking only into account that the tiles are not triangles, we are led to the situation illustrated

in Figure 9. As all tiles must then be quadrilaterals, there are in fact only two possibilities,

depicted in Figure 10. The following proof works for both possibilities.

Figure 10

Since the angle at v2 is right, K has a right angle and the angle θ < π/2.

If ∠sua1 = π/2 then K1 = v1sua1 has no opposite right angles. But K2 = a1ua2v2 has such

angles, those in u and v2, which is absurd.
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If ∠ua1v1 = π/2 then K2 has two neighbouring right angles. The same must have K1, too,

so its angle at u must be right, which implies that K2 is a rectangle, which is false under our

present hypotheses.

If ∠v1su = π/2, then K has two adjacent angles measuring π/2 and θ. Moreover, ∠ua2v2 =
π − θ > π/2. Then K2 must have its adjacent angles measuring π/2 and θ either

(i) at v2 and a1, or

(ii) at a1 and u.

Figure 11

In case (i), v1s and a1u are parallel, ∠a1ua2 = π/2, so K1 has adjacent right angles, while

K2 has not.

In case (ii), K2 has adjacent right angles, and K1 not.

Case II. Each side vivi+1 contains exactly one vertex ai in its relative interior, except for one

side, say v3v4, which contains two.

Since there are no triangles, we have only three possibilities, displayed in Figure 11. Lemma 4

forbids the possibility in Figure 11(c). The existence of quadrilaterals implies that all tiles are

quadrilaterals. This implies collinearities in both cases of Figures 11(a), (b), see Figure 12.

We treat first the case of Figure 12(a), see Figure 13.

Figure 12
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Case 1. ∠sa2v2 = π/2.

If the tiles are rectangles, then a2, s, a4 are on the line y = 3/5, as A(K1) + A(K2) = 2/5.

Since A(K1) = 1/5, |a4s| = 1/2. But K4 has a side |a4v4| = 3/5, and we have a contradiction.

(a) (b)

Figure 13

If the tiles are not rectangles, let ∠v1a1s = α ̸= π/2. See Figure 13(a). Then, in K1,

∠v1a4s = π/2. Thus, a2, s, a4 are again collinear, and |v1a4| = 2/5. The tile K4 has right angles

at a4 and v4, but |v4a4| = 3/5, and we obtain again a contradiction.

Case 2. ∠sa2v2 = α ̸= π/2.

Then, in K3, ∠v3a3u = α, ∠v3a2u = π − α, ∠a2ua3 = π/2, and K3 has two opposite right

angles. See Figure 13(b). Further, ∠sa′3a3 = π/2, whence K4 has two adjacent right angles, and

no opposite such angles, absurd.

Figure 14

We now treat the case of Figure 12(b).

Let s be the neighbour of a1 in intQ. Assume first that α = β = π/2, where α = ∠sa1v1
and β = ∠sa1v2. See Figure 14(a). If a4sa1v1 and a2sa1v2 are not rectangles, then the length
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of sa1 lies between the lengths of a4v1 and a2v2, and the two tiles are not congruent. Hence K

is a rectangle.

Then a4 = (0, 3/5), since the three tiles meeting v3v4 make up together 3/5 of the whole

area. Thus, they have sides of length 3/5, 1/3. The remaining tiles have a side of length 2/5. A

contradiction is reached.

Assume now w.l.o.g. that α > β. Then ∠sa2v2 = α or ∠a1sa2 = α.

In the first case, it follows that ∠v1a4s = β and the congruence of the tiles a4sa1v1 and

a2sa1v2 yields |a4v1| = |a1v2|, |a1v1| = |a2v2|, |a4s| = |a1s|, |a1s| = |a2s|, and ∠a1sa4 =

∠a1sa2 = π/2. See Figure 14(b). Thus, s is the centre of Q, and the tiles a4sa1v1 and a2sa1v2

occupy an area of 1/2, which is too much.

In the second case, the line-segment a2a4 is parallel to v1v2, see Figure 14(c). The tile

containing a4v4 and the tile containing a2v3 have each two right angles and two angles equal

to α and β. This leaves the third tile under a2a4 without any right angle, which gives a

contradiction.

Case III. Each side vivi+1 contains exactly one vertex ai in its interior, except for two opposite

sides, each of which contains two.

This situation of six vertices in Q∗, i.e. b = 10, appears indeed in Figure 8 and is solved

by Lemma 5. It is easily seen that there are no further possibilities with six vertices in Q∗,

admitting at least one of them on each side of Q and respecting Lemma 1.

We know now that at least one side of Q, say v1v4, has no vertex in its (relative) interior.

Hence, a side of K has length 1. Let K4 be the tile including v1v4.

Assume first that K4 has two acute angles, β at v1 and α at v4, not both π/4. W.l.o.g.

α ≤ β. Thus α < π/4. Indeed, if α ≥ π/4, then β > π/4, and some tile has at v1 an angle

γ < π/4, whence K has all angles α, β, γ with α + β + γ < π, which is not possible. Then all

other angles of K4 are obtuse.

Another tile with an edge on v1v2, say K1, has a vertex at v1, too. Its angle at v1 is at most
π
2 − β. This angle is necessarily α if β ≥ π/4, but can also be β if β < π/4. We consider the

case that this angle is α, the other case being analogous.

All sides of K4 but one, v1v4, have length less than 1. If v1v2 is not the side of K1 of length 1,

then K1 has a side v1s of length 1, with s ∈ intQ. Its angle at s must be β. See Figure 15.

Since K1 has at least four sides, the third and the fourth side (not v1s and not on v1v2)

are common edges with other two tiles, K2 and K3. Since α < π/4 and α + β ≤ π/2, we have

K1 ∪K2 ∪K3 ⊂ X, where X = v1v2v3 ∪ v3t
′t. Here, t ∈ v1v3 has distance 1 from v1, and t′ is

its orthogonal projection onto v3v4. But

A(X) =
1

2
+

(√
2− 1

)2
· 1
2
· 1
2
<

3

5
,

which is false. Hence K1 has a vertex at v2, and an angle β there. Thus, a tile K2 has an angle

α at v2 and, analogously, an angle β at v3, while a tile K3 has an angle α at v3 and an angle β

at v4.
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Figure 15

(a) (b)

Figure 16

If α + β < π/2, we are led to the existence of a huge non-convex tile, see Figure 16(a). So,

α+β = π/2. Since the tile in intQ is convex, it must be a quadrilateral, see Figure 16(b). Since

K1, K2, K3, K4 are congruent, K5 is a square, which is impossible.

Assume now that K has a side of length 1 and both incident angles measure π/4, or one of

them measures π/4 and the other π/2.

Suppose that both K4 and K1 have at v1 the angle π/4. See Figure 17.

Figure 17
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Assume K1 has not v1v2 as a side. Then it has a side v1s of length 1, and another side v1a1 ⊂
v1v2. A third tile K2 must then have a vertex at a1. If ∠v2a1s ≥ π/2, then A (v1sa1) ≥ 1/4,

absurd. Hence ∠v2a1s < π/2. Consequently, K2 must have at a1 an angle of π/4. If a2 ∈ v2v3 is

chosen such that ∠a2a1v2 = π/4, we must have |a1a2| ≥ 1, because diamK2 ≥ 1. It follows that

|v1a1| ≤ 1 − 1√
2
. If s′ denotes the orthogonal projection of s onto a1a2, we have K1 ⊂ v1ss

′a1.

We calculate

A
(
v1ss

′a1
)
≤

(
1− 1√

2

)
1√
2
− 1

4

(
1− 1√

2

)2

=
6
√
2− 7

8
<

1

5
,

and obtain a contradiction.

Hence K1 has v1v2 as a side. If K has two angles measuring π/4 each, then all other angles

are obtuse, and we are led to the tiling of Figure 18(a), which displays a rhombus as a tile. This

is impossible. Hence, K has, incident to a side of length 1, two angles, one measuring π/4 and

the other π/2. Any other angle of K is larger than π/4. Thus, the tiles K4 and K1 are like in

Figure 18(b). If v1s is their common edge, then s ∈ v1v3.

Figure 18

Suppose a tile K2 has a right angle at v3. Then, according to the congruence between K2 and

K4, the vertex v3 either corresponds to v4 or to a3. In both cases the side of K2 corresponding

to v1v4 joins a point of v3v4 with a point of v1v2, or a point of v2v3 with a point of v1v4,which

is impossible.

Hence, we must have two angles measuring π/4 at v3, belonging to two tiles, say K2,K3.

As the angle π/4 is adjacent to a side of length 1, such a side must be included in v1v3.

This yields |v1s| ≤
√
2− 1. Hence, one of the tiles K2,K3, say K3, has a side v3a

′
3 ⊂ v3v4 with

|v3a′3| = |v1s| ≤
√
2− 1 < 1

2 , while K2 has a side v3a
′
2 ⊂ v3v2 of the same length. The remaining

line-segments a2a
′
2 and a3a

′
3 must be sides of a tile K5, which cannot be convex, since a′2a

′
3 meets

intK2.

Hence, both angles of K4 at v1 and v4 are right. K has now at least two right angles, and

therefore at most one acute angle. Let v4, a3 be the vertices of K4 on v3v4. Since A (K4) < 1/2,

∠v1a3v4 > π/4, whence the angle of K4 at a3 is also larger than π/4. If such an angle is
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accommodated at v2 or v3, then we have there another angle, smaller than π/4, but such an

angle is not available. Hence, there is another tile, K2, with v2v3 as a side and with right angles

at v2, v3.

Figure 19

Let K4 = v1v4a3s1s2...sna1 with a1 ∈ v1v2, a3 ∈ v3v4. See Figure 19. Assume w.l.o.g. that

∠v4a3s1 ≤ ∠v1a1sn.
If K4 is not a quadrilateral, then

∠v1a1sn + ∠v4a3s1 > π.

If ∠v4a3s1 < π/2, then K has exactly one acute angle. Some tile different from K4 must

have at a1 an angle measuring at most π − ∠v1a1sn, which is smaller than ∠v4a3s1, and a

contradiction is obtained.

If ∠v4a3s1 ≥ π/2, then K4 has no acute angle, but π − ∠v1a1sn < π/2, and some tile must

have an acute angle at a1, absurd.

Hence, K is a quadrilateral with angles π/2, π/2, α, π − α, where w.l.o.g. α ≤ π/2.

If ∠a1a3v4 = α < π/2, then some tile must have at a1 the angle α, because ∠v2a1a3 = α

and the other angles of K are not acute. As |a1v2| < 1 < |a1a3|, only one possibility exists for

K1, and K4 ∪K1 is a rectangle. Analogously, K2 ∪K3 is another rectangle, and consequently

K5 is a rectangle, absurd. Hence, α = π/2 and we get the tiling of Figure 1. �

Epilogue

Our proof of Danzer’s conjecture did not separate combinatorial from geometric tools. It in-

tended to use the whole power of the strong requirement asked to be fulfilled, in order to obtain

a reasonably short proof.

We would like to mention that we started our investigation by using Euler’s formula and other

combinatorial arguments, reaching the conclusion that the tiles must be triangles or quadrilat-

erals. However, that type of argument did not help further. Geometric tools became necessary,
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and the new arguments made the previous combinatorial insight almost redundant; so dropping

it completely shortened the paper.

Problem 1. Does every dissection of the square into five similar convex tiles use right

isosceles triangles or rectangles as tiles?

Figure 20

It is easily seen that Figure 1 does not show the only such tiling using rectangles. For

example, one of the rectangles, of increased diameter, can be horizontal, the others, of diminished

diameter, vertical. Similarly, Figure 20 does not show the only dissection with five right isosceles

triangles.

Problem 2. Does every dissection of the square into five equiangular convex polygons use

only angles measuring π/4, π/2, 3π/4 ?

Here, two polygons are equiangular, if there exists a bijection between their vertex sets

respecting the order of the vertices, such that the angles at corresponding vertices be equal.

Problem 3. Find all dissections of the square into five equiangular non-rectangular convex

polygons.

Häggkvist, Lindberg, and Lindström [4] estimated the number of dissections of the square

into n rectangles of equal areas, thus answering a question by Ihringer in Moser’s work [7], see

also [2].

Problem 4. Is every dissection of the square into n congruent convex tiles necessarily the

“standard” one (i.e. analogous to Figure 1) if n ≥ 3 is a prime number?

Maltby [5] solved Problem 4 for the case n = 3. We solved it for the case n = 5 in the

present paper, so it remains open for n ≥ 7.

Besides, Danzer’s conjecture in more general settings (see the first section) remains open.
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