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Abstract. A graph G is almost hypohamiltonian if G is non-
hamiltonian, there exists a vertex w such that G − w is non-
hamiltonian, and for any vertex v 6= w the graph G − v is hamilto-
nian. We prove the existence of an almost hypohamiltonian graph with
17 vertices and of a planar such graph with 39 vertices. Moreover, we
find a 4-connected almost hypohamiltonian graph, while Thomassen’s
question whether 4-connected hypohamiltonian graphs exist remains
open. We construct planar almost hypohamiltonian graphs of order n
for every n ≥ 76. During our investigation we draw connections be-
tween hypotraceable, hypohamiltonian and almost hypohamiltonian
graphs, and discuss a natural extension of almost hypohamiltonicity.
Finally, we give a short argument disproving a conjecture of Chvátal
(originally disproved by Thomassen), strengthen a result of Araya and
Wiener on planar cubic hypohamiltonian graphs, and mention open
problems.
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1 Introduction

Throughout this paper all graphs are undirected, finite, connected, and contain
neither loops nor multiple edges. For undefined notions, please consult [29]. A graph
G is hypohamiltonian if G does not contain a hamiltonian cycle but for any v ∈ V (G)
the graph G − v does contain a hamiltonian cycle. Replacing in the preceding
sentence “cycle” by “path”, we obtain the definition of a hypotraceable graph. The
study of hypohamiltonian graphs was initiated in the early sixties by Sousselier [21]
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and Gaudin, Herz, and Rossi [8]. Hypohamiltonian graphs were extensively studied
by Thomassen [22–26]; other important contributors are Chvátal [4], and Collier
and Schmeichel [6, 7], among others. For further details, see the survey by Holton
and Sheehan [15]. Grötschel [10] discusses hypohamiltonian graphs in the context
of the travelling salesman problem. Recent applications of concepts closely related
to hypohamiltonicity can be found in [20].

In the early seventies, Chvátal [4] raised the problem whether there exists a
planar hypohamiltonian graph, and offered $5 for its solution [5, Problem 19].
Grünbaum conjectured that no such graph exists [11, p. 37]. In 1976, Thomassen [24]
constructed infinitely many such graphs, the smallest among them having order 105.
In 1979, Hatzel [12] found a smaller planar hypohamiltonian graph, having 57 ver-
tices. This was improved to 48 by the author and Zamfirescu [32], to 42 by Araya
and Wiener [30], and most recently to 40 vertices by Jooyandeh, McKay, Österg̊ard,
Pettersson, and the author [17]. The latter three graphs are shown in Fig. 1. The
40-vertex graph is the smallest example known so far, together with other 24 graphs
of the same order [17].
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Fig. 1: From left to right: Planar hypohamiltonian graphs of order 48, 42, and 40, respectively.

They held or hold the world record of smallest known planar hypohamiltonian graph for the

periods 2007–9, 2009–12, and since 2012, respectively.

Kapoor, Kronk, and Lick [18] conjectured in 1968 that no hypotraceable graphs
exist. This conjecture was refuted when a hypotraceable graph was subsequently
found by Horton [16]. It has 40 vertices. Thomassen [22] showed that there exists a
hypotraceable graph with n vertices for n ∈ {34, 37, 39, 40} and every n ≥ 42.

A graph G is almost hypohamiltonian if G is non-hamiltonian, and there exists
a vertex w, which we will call exceptional, such that G− w is non-hamiltonian, yet
for any vertex v 6= w the graph G − v is hamiltonian. We denote the family of
hypohamiltonian graphs by H, and the family of almost hypohamiltonian graphs
by H1. If these graphs are additionally planar, we denote them by H and H1,
respectively. For a vertex v, we denote by N(v) the set of vertices which are joined
by an edge to v, and put N [v] = N(v) ∪ {v}. A 4-cycle or a quadrilateral face is
cubic, if all of its vertices are cubic. We will use the following.

Grinberg’s Criterion [9]. Given a plane graph with a hamiltonian cycle h and
exactly fi (f

′
i) i-gons inside (outside) of h, we have

∑

i≥3

(i− 2)(fi − f ′
i) = 0.
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In this paper we study the almost hypohamiltonian graphs and their relationship
to the hypohamiltonian graphs. Afterwards, we extend the notion to k-hypohamil-
tonicity for various k. For k = 0 we get hypohamiltonicity and for k = 1 almost
hypohamiltonicity. In search for such graphs of minimal order, we notice the special
position of the cases k = 0 and k = 1 among k-hypohamiltonian graphs, and that
almost hypohamiltonian graphs play a special role among non-hamiltonian non-
hypohamiltonian graphs.

2 Results

2.1 Almost hypohamiltonian graphs

Let G be a graph. Define Gw as G to which we add a vertex w and edges vw for
all v ∈ V (G). Furthermore, for a vertex u put G− u = Gu; still, we will sometimes
write G − u for emphasis. Let S be a subset of V (G) defined as follows. For each
v ∈ V (G), there exists a hamiltonian path in G− v the end-vertices of which lie in
S. Call S a set of ends, and write Gw,S = (V (G)∪{w}, E(G)∪{vw : v ∈ S}). Thus
Gw,V (G) = Gw if V (G) is a set of ends.

Lemma 1. Let G be a hypotraceable graph, and S a set of ends. Then Gw,S is
almost hypohamiltonian with exceptional vertex w.

Proof. G is hypotraceable and therefore non-traceable, so G and Gw,S are non-
hamiltonian. Consider v ∈ V (G). In G − v there exists a hamiltonian path p the
end-vertices u and u′ of which belong to S. If we add to p the edges uw and wu′,
we obtain a hamiltonian cycle in Gw,S − v. �

Thomassen [22] introduced the following method to construct hypotraceable
graphs from known hypohamiltonian graphs. Consider four hypohamiltonian graphs
G1, ..., G4, and cubic vertices vi ∈ V (Gi) with N(vi) = {vi1, vi2, vi3}. Take the
four vertex-disjoint graphs Gi − vi. Therein, identify v11 with v21 and v31 with
v41, and add the edges v12v32, v22v42, v13v33, v23v43. This operation preserves pla-
narity. Thomassen [22] showed that the resulting graph is hypotraceable. Call T
the 34-vertex hypotraceable graph constructed by Thomassen [22] by applying above
method to four copies of the Petersen graph. As far as the author is aware, T is the
smallest known hypotraceable graph.

Corollary 1. Tw is an almost hypohamiltonian graph of order 35.

Here, it is worth mentioning that Thomassen [25] asked whether hypohamiltonian
graphs with minimum degree 4 or 4-connected such graphs exist (see Problem 6).
Tw is almost hypohamiltonian and has minimum degree 4. But we obtain an even
more surprising result if we apply Lemma 1 to Horton’s hypotraceable graph H
from [16] (with S = V (H)). As H is 3-connected, this yields a 4-connected almost
hypohamiltonian graph of order 41, shown in Fig. 2. (Adding planarity as condition
is futile due to Tutte’s famous result [28].) After Horton’s discovery, Thomassen [24]
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generalized his construction and showed that there exist infinitely many 3-connected
hypotraceable graphs. This immediately yields infinitely many 4-connected almost
hypohamiltonian graphs.

Fig. 2: A 4-connected almost hypohamiltonian graph.

In reverse order, if we take an almost hypohamiltonian graph and delete its
exceptional vertex, we are only guaranteed to obtain a non-hamiltonian graph which
is traceable if an arbitrary vertex is deleted – the family of such graphs might be
of future interest (as it contains both the family of all hypotraceable graphs and
the family of all hypohamiltonian graphs, but is not their union), but will not be
discussed in this paper.

Lemma 2. The 39-vertex graph shown in Fig. 3 is planar and almost hypohamilto-
nian.

Proof. We denote the graph from Fig. 3 by G.
G is obviously planar. By Grinberg’s Criterion, G is non-hamiltonian. Fig. 3

shows that for all v ∈ V (G) \ {w} the graph Gv is hamiltonian. It remains to prove
that Gw is non-hamiltonian. Assume the contrary, i.e. Gw contains a hamiltonian
cycle h. Denote by f5 (f ′

5) the number of pentagons inside (outside) of h. By
Grinberg’s Criterion, we have

±2 + 3(f5 − f ′
5)− 16 = 0,

which implies that the quadrilateral Q lies outside of h, i.e. on the same side as the
unbounded face. Thus, the following holds.

Claim. Consider a half-line ℓ emanating from a point in int(Q) such that each in-
tersection of ℓ with h is transversal. Then ℓ and h have an even number of common
points.

Evidently, the bold edges in Fig. 4 (a) lie in h.
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Fig. 3: Hamiltonian cycle in G− v, v 6= w.
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Fig. 4: Gw is non-hamiltonian.

5



Consider the edges e and e′ from Fig. 4 (a). Due to symmetry, there are three
cases to consider. (1) {e, e′} ⊂ E(h), (2) e ∈ E(h) and e′ /∈ E(h), and (3) {e, e′} ∩
E(h) = ∅.

Case (1). Clearly, all edges drawn boldly in Fig. 4 (b) lie in h. Applying the
Claim leads to contradiction.

Case (2). The bold edges from Fig. 4 (c) certainly lie in h. Due to the Claim,
a /∈ E(h), whence, b ∈ E(h). But now we lose the vertex x.

Case (3). The bold edges shown in Fig. 4 (d) lie in h. Consider the edges a and
c from Fig. 4 (d). If a ∈ E(h), then c ∈ E(h) due to the Claim. So we are in the
situation depicted in Fig. 4 (e). Now the edge b from Fig. 4 (e) lies in h and we lose
x. Hence, the assumption that a ∈ E(h) is false. In consequence, by the Claim,
c /∈ E(h), too. So b ∈ E(h). We are in the situation shown in Fig. 4 (f). But now
clearly x is lost, so we have yet again obtained a contradiction. �

Consider graphs G and H , and the cubic vertices x ∈ V (G) and y ∈ V (H).
Denote by GxHy one of the graphs obtained from Gx and Hy by identifying the
vertices in N(x) with those in N(y) using a bijection. Thomassen [22] showed that
if G,H ∈ H, then GxHy ∈ H. Note that if G ∈ H, then G contains no triangle with
a cubic vertex.

Lemma 3. Let G ∈ H1 contain a cubic vertex x different from the exceptional vertex
w of G, and H ∈ H contain a cubic vertex y. Then GxHy ∈ H1 with exceptional
vertex w. If G and H are planar, then so is GxHy.

Proof. We treat G − x and H − y as subgraphs of GxHy. Let N(x) = N(y) =
{z1, z2, z3} in GxHy. Abusing notation, we also denote by zi the corresponding
vertices in G and H , i.e. by {z1, z2, z3} the set of neighbours of x in G, and by
{z1, z2, z3} the set of neighbours of y in H . Assume GxHy contains a hamiltonian
cycle h. If h ∩G is connected, then it is a path. W.l.o.g. this path has end-vertices
z2, z3. Then (h∩G)∪ z2xz3 is a hamiltonian cycle in G, a contradiction, as G ∈ H1.
If h ∩ G consists of two components, w.l.o.g. a path with end-vertices z2, z3 and
the isolated vertex z1, then (h ∩ H) ∪ z2yz3 is a hamiltonian cycle in H , again a
contradiction.

Next, we prove that GxHy − w is non-hamiltonian. Assume the contrary, and
let h be a hamiltonian cycle in GxHy − w. Suppose that w /∈ N(x). W.l.o.g.
let z1 be a vertex satisfying either {e ∈ E(h) : e is incident to z1} ⊂ E(G) or
{e ∈ E(h) : e is incident to z1} ⊂ E(H). In the former case, by adding the edges
xz2 and xz3 to h∩ (G− x) we obtain a hamiltonian cycle in G−w, a contradiction,
as w is an exceptional vertex of G. In the latter case, (h ∩ (H − y)) ∪ z2yz3 is a
hamiltonian cycle in H , a contradiction. Now say w = z1. Once more, let h be a
hamiltonian cycle in GxHy −w. By adding to h∩ (G− x) the edges xz2 and xz3 we
obtain a hamiltonian cycle in G− w, again a contradiction.

It remains to show that GxHy − v is hamiltonian for all v 6= w. Let v ∈ V (G) \
N(x). Then there exists a hamiltonian cycle h in G − v. Assume w.l.o.g. that
z2xz3 ⊂ h. Put pG = h − x. Let pH be the path in H obtained by taking the
hamiltonian cycle in H − z1 minus y. pG ∪ pH is the desired hamiltonian cycle in
GxHy − v. What if v ∈ N(x), say v = z1? Then certainly z2xz3 ⊂ h, h being a
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hamiltonian cycle in G−z1. We are once more in the situation discussed above. For
v ∈ V (H) the treatment is very similar. �

Let G be a graph containing a 4-cycle v1v2v3v4v1 = C. We denote by Th(GC)
the graph obtained from G by deleting the edges v1v2 and v3v4 and adding a 4-
cycle v′1v

′
2v

′
3v

′
4v

′
1 disjoint from G, and the edges viv

′
i, 1 ≤ i ≤ 4, to G. With Araya

and Wiener [30], we call Th the Thomassen operation, since it was introduced by
Thomassen [26] to show that there exist infinitely many planar cubic hypohamilto-
nian graphs. In the remainder of this article, we tacitly treat G− {v1v2, v3v4} as a
subgraph of Th(GC). The statement of Lemma 4 is a slight modification of a claim
of Thomassen, see [26]; we omit here its proof.

Lemma 4 [26]. Let G be a planar non-hamiltonian graph containing a quadrilateral
face bounded by the cycle C. Then Th(GC) is planar and non-hamiltonian.

In [26], Thomassen also showed that given a graph G ∈ H which contains a cubic
quadrilateral face bounded by the cycle C, we have Th(GC) ∈ H. We now prove a
modified version of this result tailored to our needs.

Lemma 5. Let G ∈ H1 have exceptional vertex w and contain a cubic quadrilateral
face bounded by the cycle C, w /∈ V (C). Then Th(GC) ∈ H1. If G is cubic, then so
is Th(GC).

Proof. Let C = v1v2v3v4v1. By Lemma 4, both Th(GC) and Th((G − w)C) =
Th(GC) − w are planar and non-hamiltonian. We first show that Th(GC) − v′i is
hamiltonian. Let h be the hamiltonian cycle in G − v2. Clearly, P = v1v4v3 ⊂ h.
In Th(GC), transform P into v1v4v

′
4v

′
3v

′
2v2v3. We obtain a hamiltonian cycle in

Th(GC) − v′1. The cases v′2, v
′
3, and v′4 work in the same way. We construct the

remaining hamiltonian cycles in Th(GC) − v, where v 6= w, by modifying cycles of
length |V (G)| − 1 in Gv, see Fig. 5. �

Theorem 1. There exists a planar almost hypohamiltonian graph of order 39 + 4k
for every k ≥ 0, as well as of order n for every n ≥ 76.

Proof. Consider the graph G from Fig. 3 and denote the vertices of the quadrilat-
eral by v1, v2, v3, v4 in counter-clockwise order starting in the top left. Now consider
Th(GC) as in the paragraph above Lemma 4. By Lemma 4, Th(GC) is planar and
non-hamiltonian. Consider v ∈ V (G) \ {w} and denote its corresponding vertex
in Th(GC) also by v. For every v, Fig. 3 depicts a hamiltonian cycle h in G − v
which uses at least one edge of C. Thus, we can use Fig. 5 and transform h into a
hamiltonian cycle in Th(GC)− v. Fig. 3 shows a hamiltonian cycle in G − v4 (the
sixth graph). If we replace in this cycle v1v2 with v1v4v

′
4v

′
3v

′
2v2, we obtain a hamil-

tonian cycle in Th(GC)− v′1. Fig. 3 shows a hamiltonian cycle in G− v1 (the fourth
graph). If we replace in this cycle v3v4 with v3v

′
3v

′
2v

′
1v1v4, we obtain a hamiltonian

cycle in Th(GC)− v′4. Hamiltonian cycles in Th(GC)− v′2 and Th(GC)− v′3 follow
from the graph’s symmetries. Assume Th(GC)−w contains a hamiltonian cycle h′.
Taking symmetry into account, Th(GC)[{vi, v

′
i}

4
i=1]∩ h′ must be shown (in bold) on

the right side of one of the seven diagrams from Fig. 5. Going from right to left, we
can transform h′ into a hamiltonian cycle in G− w, a contradiction.
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Fig. 5: On the left-hand side of each of the seven diagrams the bold edges show the subset of

edges of the 4-cycle C contained in an (n− 1)-cycle h′ in G; on the right-hand side it is shown

what the modified h′ looks like in Th(GC).

We have shown that Th(GC) is a planar almost hypohamiltonian graph. Th(GC)
has order 43 and contains the cubic quadrilateral v′1v

′
2v

′
3v

′
4v

′
1. Consider Th(GC) and

apply Lemma 5 as often as necessary to obtain the first statement of the theorem.
For the second statement, we use a result from [17]: for every n ≥ 42 there exists a
planar hypohamiltonian graph of order n. As described in Lemma 3, we glue each
of these graphs to G. �

Let G ∈ H1 contain a 4-cycle v1v2v3v4v1 = C. We delete the edges v1v2 and v3v4,
add two new vertices v′1 and v′4, and add the edges v′1v

′
4, v1v

′
1, v4v

′
4, v

′
1v3 and v′4v2.

Denote the resulting graph by G⋆
C . The proof of Lemma 6 essentially coincides with

the proof of Lemma 1 from the author’s paper [31], and is omitted here.

Lemma 6. Let G ∈ H1 have exceptional vertex w and include a cubic 4-cycle C
not containing w. Then G⋆

C ∈ H1. If G is cubic, then so is G⋆
C.

Notice that Th(GC) = (G⋆
C)

⋆
C′ , where C ′ = v1v

′
1v

′
4v4v1. (For the second iteration

of ⋆ we delete v1v
′
1 and v4v

′
4.) So in a certain sense, this describes “half” of a

Thomassen operation.
In order to give a good upper bound on the smallest n0 for which there exists an

almost hypohamiltonian graph of order n for every n ≥ n0, we prove a simple yet
useful gluing lemma that transforms two hypohamiltonian graphs into an almost
hypohamiltonian one.
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Lemma 7. Let G and H be hypohamiltonian graphs containing cubic vertices w ∈
V (G) and w′ ∈ V (H), and let u, v ∈ N(w) and u′, v′ ∈ N(w′). If we identify u
with u′, v with v′ and w with w′, we obtain an almost hypohamiltonian graph Γ with
exceptional vertex w = w′. If G and H are planar, then so is Γ.

Proof. Note that as G and H are hypohamiltonian and w and w′ are cubic, we
have uv /∈ E(G) and u′v′ /∈ E(H). Assume there exists a hamiltonian cycle h in
Γ. By abuse of notation u, v, w shall also denote the vertices in Γ obtained when
identifying u with u′, v with v′ and w with w′, respectively. Let xvy ⊂ h. There are
three cases to study.

(a) x, y ∈ V (Gw). Then (h∩G)∪uw is a hamiltonian cycle in G, a contradiction.
(b) x ∈ V (Gw) and y ∈ V (Hw). Now (h ∩G) ∪ vw is a hamiltonian cycle in G,

a contradiction.
(c) x = w and (w.l.o.g.) y ∈ V (G). Thus vw ∈ E(h). But then (h ∩ G) ∪ uw is

a hamiltonian cycle in G, once more a contradiction. Hence, Γ is non-hamiltonian.
We now show that Γ−w is non-hamiltonian. Again, assume the contrary, and let

h be a hamiltonian cycle inGw. Put {x, y} = N(u)∩V (h) and {x′, y′} = N(v)∩V (h).
We have x, x′ ∈ V (Gw). Then (h ∩G) ∪ vw ∪wu yields a hamiltonian cycle in G, a
contradiction.

Finally, we prove that Γ− x is hamiltonian for x 6= w. There are two cases.
(a) x ∈ {u, v}, say x = u. As w has degree 3 in G, a hamiltonian cycle h in Gu

contains the edge vw. Similarly, a hamiltonian cycle h′ in Hu′ uses the edge v′w′.
Now (h− vw) ∪ (h′ − v′w′) yields a hamiltonian cycle in Γ− u.

(b) x /∈ {u, v}. Let x ∈ V (G). Consider a hamiltonian cycle h in Gx. h contains
wu or vw (possibly both), say vw. Let h′ be a hamiltonian cycle in Hu′. As before,
h′ contains v′w′. Now (h− vw) ∪ (h′ − v′w′) is a hamiltonian cycle in Γ− x. �

Theorem 2. There exists an almost hypohamiltonian graph of order n for every
n ≥ 17 with the possible exception of 18, 19, 21, and 24.

Proof. It is known (see e.g. [1] for details) that there exist hypohamiltonian
graphs of order n if and only if n ∈ {10, 13, 15, 16} or n ≥ 18, to which we apply
Lemma 7. (Note that no hypohamiltonian graph with minimum degree at least 4 is
known.) The equation x+y−3 = n has solutions x, y ∈ {10, 13, 15, 16, 18, 19, 20, ...}
for every n ≥ 17 except n = 18, 19, 21, 24. �

Next, we present a method of transforming two almost hypohamiltonian graphs
into a hypohamiltonian one.

Theorem 3. Consider G,H ∈ H1 with cubic exceptional vertices w and w′, respec-
tively. Then GwHw′ ∈ H. If G and H are planar, then so is GwHw′.

Proof. We denote by x, y, z the vertices in GwHw′ obtained when identifying
N(w) with N(w′). Abusing notation, we also write N(w) = {x, y, z} in G and
N(w′) = {x, y, z} in H , where x in GwHw′ is the vertex obtained when identifying
x in G with x in H , and analogously for y and z.

First we show that GwHw′ − x is hamiltonian. Let hG be a hamiltonian cycle
in Gx, and hH a hamiltonian cycle in Hx. By deleting from hG the edges yw and
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w

Fig. 6: The smallest known almost hypohamiltonian graph (of order 17) with exceptional vertex

w; it is obtained by applying Lemma 7 to two copies of the Petersen graph.

wz we obtain a path pG in G which avoids x and w and has end-vertices y and z.
From hH we delete yw′ and w′z and obtain a path pH which avoids x and w′ and
has end-vertices y and z. Now pG ∪ pH is a cycle of length |V (GwHw′)| − 1 avoiding
x, as wished.

Now we show that GwHw′ − v is hamiltonian, where v ∈ V (GwHw′) \ N(w);
w.l.o.g. v ∈ V (G) \ {w}. Consider a hamiltonian cycle hG in Gv. Assume w.l.o.g.
that yw, wz ∈ E(hG). Now consider a hamiltonian cycle hH in Hx. Delete from hG
the edges yw and wz, thus obtaining a path pG, and delete from hH the edges yw′

and w′z, thereby obtaining a path pH . Now pG ∪ pH yields the desired cycle.
Finally, we prove that GwHw′ is not hamiltonian. Indeed, if GwHw′ is hamilto-

nian, either Gw or Hw′ has a hamiltonian path joining two vertices in N(w), which
can be immediately extended to a hamiltonian cycle in G or H , contrary to the
hypothesis. �

Theorem 3 warrants the question whether there exist almost hypohamiltonian
graphs whose exceptional vertex is cubic. Although we are not able to provide an
almost hypohamiltonian graph which is cubic, we can answer the previous question
affirmatively, even if planarity is added as condition.

Theorem 4. There exists a planar almost hypohamiltonian graph of order n whose
exceptional vertex is cubic for n = 47 and for every n ≥ 84.

Proof. Consider the graph G of order 47 from Fig. 7, and denote by w the
(unique) cubic vertex surrounded by quadrilaterals. By Grinberg’s Criterion, G and
G−w are non-hamiltonian. That indeed for every v ∈ V (G) \ {w} the graph G− v
is hamiltonian we skip here; the proof thereof can be found in the Appendix. In
order to obtain an infinite family, as in the proof of Theorem 1, we use the following
result from [17]. For every n ≥ 42 there exists a planar hypohamiltonian graph of
order n. To G and each of these graphs we apply Lemma 3. �

2.2 Beyond almost hypohamiltonicity

A 2-connected graph G is k-hypohamiltonian if G is non-hamiltonian, there exists a
set W ⊂ V (G) of cardinality k ≤ |V (G)|−1, so that for every w ∈ W the graph Gw
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w

Fig. 7: A planar almost hypohamiltonian graph with cubic exceptional vertex w.

is non-hamiltonian, and for every v ∈ V (G) \W the graph Gv is hamiltonian. The
vertices in W are exceptional. Denote the family of all k-hypohamiltonian graphs
by Hk. H0 = H is the family of all hypohamiltonian graphs, and H1 the family of
all almost hypohamiltonian graphs.

Somewhat surprisingly, it turns out that for k ≥ 2 it is easy to construct very
small k-hypohamiltonian graphs, even if one adds the condition of planarity: con-
sider a 4-cycle v1v2v3v4v1 = C. For k ≥ 4, add to C the path v2w1w2...wk−3wk−2v4.
The graph one obtains is k-hypohamiltonian with v2, v4, w1, ..., wk−2 as exceptional
vertices. For k = 2 take K2,3, and for k = 3 consider the construction for k = 5 to
which the edge v1w2 is added. Summarizing, if we define αk (αk) as the order of the
smallest (smallest planar) k-hypohamiltonian graph, then

α0 = 10, α1 ≤ 17, α2 = α2 = 5, α3 ≤ 7, α4 = α4 = 6, α5 ≤ 7,

and αℓ = ℓ+ 1 for all ℓ ≥ 6,

where for α2 and α2 the equalities follow from the fact that all three 2-connected
graphs on fewer than 5 vertices are hamiltonian. Concerning α4 and α4, the four
2-connected non-isomorphic spanning subgraphs of K5 with at least eight edges are
hamiltonian. Among the three with seven edges, two are hamiltonian, while the
third one is 2-hypohamiltonian. Among the two with six edges, one is hamiltonian,
the other one – which is K2,3 – is 2-hypohamiltonian. The only one with five edges
is the 5-cycle. No other spanning subgraphs are 2-connected. To justify the last
equality, let ℓ ≥ 6. Between two fixed vertices take three paths, one of length 2,
one of length 3, and one of length ℓ− 3. This graph is ℓ-hypohamiltonian and has
order ℓ+ 1. By [17] and Lemma 2, we have

α0 ≤ 40 and α1 ≤ 39,

noticing a striking discrepancy between the cases k = 1 and k = 2.

Let H be a 2-connected graph containing three vertices v1, v2, v3, and write
{v1, v2, v3} = ∂H . Additionally, for any i, j with i 6= j, there exists a hamiltonian
path between vi and vj . We call such a graph H nice.
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Theorem 5. Let G ∈ Hj, j ≥ 0, v be a cubic vertex in G with no exceptional vertex
in N(v), and let H be a nice graph. Join by three edges the vertices of ∂H to those
of N(v), according to a bijection, and delete v. Then for the resulting graph Γ we
have

Γ ∈

{

Hj+|V (H)|−1 if v is exceptional in G

Hj+|V (H)| otherwise.

If G and H are planar and ∂H lies in the boundary of a face, then Γ is planar.
If all vertices in V (G) and V (H) \ ∂H are cubic, and all vertices in ∂H have degree
2, then Γ is cubic.

Proof. Let ∂H = {v1, v2, v3} and N(v) = {v′1, v
′
2, v

′
3} with viv

′
i ∈ E(Γ) for all

i ∈ {1, 2, 3}. We consider Gv and H to be subgraphs of Γ.
First we show that Γ is non-hamiltonian and that Γx is non-hamiltonian for all

x ∈ V (H). Assume the contrary. A hamiltonian cycle of Γ or Γx intersects Gv

(which we here consider as a subgraph of Γ or Γx, respectively) along a hamiltonian
path p. W.l.o.g. suppose that v′2 and v′3 are the end-vertices of p. In G, p ∪ v′3vv

′
2 is

a hamiltonian cycle, a contradiction.
Consider the set W of exceptional vertices in G and w ∈ W . Assume there

exists a hamiltonian cycle h in Γw. W.l.o.g. v′1v1 /∈ E(h). Now (h ∩Gv) ∪ v′2vv
′
3 is a

hamiltonian cycle in Gw, a contradiction, as w is exceptional in G. By construction,
v /∈ V (Γ), so Γ ∈ Hj+|V (H)|−1 if v is exceptional and Γ ∈ Hj+|V (H)| otherwise.

Finally, we show that Γz is hamiltonian if z ∈ V (G) \ ({v} ∪ W ). Let h′ be a
hamiltonian cycle in Gz, which exists, as z is non-exceptional. W.l.o.g. v′1vv

′
2 ⊂ h′.

Put p′ = h′ ∩Gv. There exists a hamiltonian path p′′ between v1 and v2 in H since
H is nice. Now p′ ∪ v′1v1 ∪ v′2v2 ∪ p′′ is the desired hamiltonian cycle in Γz. �

Actually, the above operation can be applied simultaneously to k cubic vertices
– recall that there exist infinitely many cubic hypohamiltonian graphs [3], even if
one adds planarity as condition [26].

A strengthening of Lemma 3 follows.

Theorem 6. Let i, j ≥ 0, G ∈ Hi have the set of exceptional vertices W , and
H ∈ Hj have the set of exceptional vertices W ′. Let x ∈ V (G) and y ∈ V (H)
be cubic vertices with the property that N [x] ∩ W = ∅ and N [y] ∩ W ′ = ∅. Then
GxHy ∈ Hi+j with W ∪ W ′ as set of exceptional vertices. If G and H are planar,
then so is GxHy.

Proof. Let i ≤ j. The case i = j = 0 coincides with a result of Thomassen [22],
while i = 0 and j = 1 is Lemma 3. When i = 0 and j ≥ 2 the proof is very similar
to the proof of Lemma 3, so we skip it and assume in the following i ≥ 1. We
denote by z1, z2, z3 the vertices in GxHy obtained when identifying N(x) with N(y).
Abusing notation, we also write N(x) = {z1, z2, z3} in G and N(y) = {z1, z2, z3} in
H , where zk in GxHy is the vertex obtained when identifying zk in G with zk in H ,
for all k ∈ {1, 2, 3}. We treat Gx and Hy as subgraphs of GxHy.

We first show that GxHy is non-hamiltonian. Assume GxHy contains a hamil-
tonian cycle h. W.l.o.g. both edges in h incident with z1 lie in E(Gx). But then
(h ∩Gx) ∪ z2xz3 yields a hamiltonian cycle in G, a contradiction.
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Now we show that for all v ∈ W ∪W ′, the graph GxHy − v is non-hamiltonian.
W.l.o.g. let v ∈ V (G)\{x}. Assume there exists a hamiltonian cycle h in GxHy−v.
Among the vertices in {z1, z2, z3} there exists exactly one, say z1, for which either
both edges in h incident with z1 lie in (a) E(Gx) or (b) E(Hy). If (a) holds, then
(h ∩ Gx) ∪ z2xz3 is an (n − 1)-cycle in G avoiding v, a contradiction, as v is an
exceptional vertex of G. If (b) holds, then (h ∩ Hy) ∪ z2yz3 yields a hamiltonian
cycle in H , once more a contradiction.

Next we prove that GxHy − z1 is hamiltonian. Let hG be a hamiltonian cycle in
G − z1, and hH a hamiltonian cycle in H − z1; these exist as z1 is non-exceptional
in both G and H . Put pG = hG − x. pG avoids z1 and has end-vertices z2 and
z3. Similarly we obtain pH , which avoids z1 and has end-vertices z2 and z3. Now
pG ∪ pH is a cycle of length |V (GxHy)| − 1 avoiding z1. Analogously, GxHy − z2 and
GxHy − z3 are hamiltonian.

Finally we show that GxHy −u is hamiltonian, for all u ∈ V (GxHy) \ (W ∪W ′∪
{z1, z2, z3}); w.l.o.g. u ∈ V (G). Consider a hamiltonian cycle hG in G− u. Assume
w.l.o.g. that z2x, xz3 ∈ E(hG). Now consider a hamiltonian cycle hH in H − z1.
Delete from hG the vertex x (and edges incident to x), thus obtaining a path pG,
and delete from hH the vertex y (and edges incident to y), thereby obtaining a path
pH . Now pG ∪ pH is the desired cycle. �

Consider k ≥ 0. Let nk be the smallest integer such that for every n ≥ nk there
exists a planar k-hypohamiltonian graph of order n.

Corollary 2. For every k ≥ 0 we have nk < ∞.

Proof. Jooyandeh, McKay, Österg̊ard, Pettersson, and the author [17] showed
that n0 ≤ 42, and in Theorem 1 we proved n1 ≤ 76. For every n ≥ 76, let
Gn denote the graph of order n constructed in the proof of Theorem 1, and put
{Gn}n≥76 = G1. Due to the nature of Lemma 5, it is clear that each Gn contains
many cubic vertices. By applying Theorem 6 to G76 and every graph G ∈ G1, we
obtain an infinite family G2 of graphs proving n2 ≤ 147. (Note that in Theorem 6,
|V (GxHy)| = |V (G)|+ |V (H)|−5.) Now apply Theorem 6 to G76 and every G ∈ G2,
whence, n3 ≤ 218. This can be continued ad infinitum. We obtain np ≤ np−1 + 71,
for every p ≥ 2. �

Finally, Theorem 7 is a natural strengthening of Lemma 6. Its proof is analogous
to the proof of Lemma 6, so we skip it.

Theorem 7. Let G ∈ Hk with the set W of exceptional vertices contain a cubic
4-cycle C with W ∩ V (C) = ∅. Then G⋆

C ∈ Hk. If G is cubic, then so is G⋆
C.

2.3 A planar counter-example to a conjecture of Chvátal

Chvátal [4] conjectured that if the deletion of an edge e from a hypohamiltonian
graph G does not create a vertex of degree two, then G − e is hypohamiltonian.
Thomassen [23] gave numerous counter-examples to aforementioned conjecture, yet
none of them is planar. We now provide a planar counter-example.
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Consider the graph from Fig. 1 which has 48 vertices (i.e. the left-most one), the
edge denoted by e1, and the vertex denoted by v. This graph is hypohamiltonian [32].
Using Grinberg’s Criterion, it is clear that it remains hypohamiltonian if we add an
edge such that the octagon becomes two pentagons. Call this graph G. Notice that
G − e1 = G′ has no vertices of degree two. G′ − v contains exactly one heptagon
(the unbounded face) and exactly one dodecagon. Assume that G′ − v contains a
hamiltonian cycle h. Then Grinberg’s Criterion yields

3(f5 − f ′
5)− 5± 10 = 0,

where as before f5 (f ′
5) is the number of pentagons inside (outside) of h. This can

only hold if the ambiguous sign is “−”, which implies that the dodecagon, like the
heptagon, lies on the outside of h. But as e2 and e3 (see Fig. 1) lie in h, we have a
contradiction. So G′− v is not hamiltonian, whence, G′ is not hypohamiltonian. As
both G and G′ are obviously planar, we are done.

Inspired by Chvátal’s conjecture, we note here the following. Consider G ∈ H.
If there exists an edge e ∈ E(G) such that there is exactly one vertex w ∈ V (G)
with the property that for every hamiltonian cycle h in G − w we have e ∈ E(h),
then G− e is almost hypohamiltonian with exceptional vertex w.

2.4 Strengthening a theorem of Araya and Wiener

We now turn our attention to the family of planar cubic hypohamiltonian graphs. A
brief motivation follows. Hamiltonian paths and cycles in planar cubic graphs have
been investigated extensively since Tait tried to prove the four colour conjecture
based on the conjecture that every 3-connected planar cubic graph is hamiltonian.
This conjecture was disproved by Tutte [27] in 1946. Before 1968, when Grin-
berg proved his hamiltonicity criterion [9], such graphs were quite difficult to find.
Since then, several non-hamiltonian planar cubic 3-connected graphs have been con-
structed. However, for the smallest example, the Lederberg-Bosák-Barnette graph
on 38 vertices, the proof does not use Grinberg’s Criterion. In 1986, Holton and
McKay [14] (finalizing the efforts of several authors) showed that all planar cubic
3-connected graphs on fewer than 38 vertices are hamiltonian.

We require the following two results of Thomassen.

Lemma 8 [26]. Let G ∈ H contain a cubic quadrilateral face bounded by the cycle
v1v2v3v4v1 = C. Then Th(GC) ∈ H.

Lemma 9 [26]. Let G be a planar cubic graph containing a quadrilateral adjacent
to four heptagons, and suppose furthermore that any other face is a k-gon, where
k = 2 mod 3. Then G is non-hamiltonian.

We will show in Lemma 11 the existence of a 76-vertex planar cubic hypohamil-
tonian graph, which we call Λ (see Fig. 8), with which we strengthen the main result
of Araya and Wiener in [2]; they showed the following.

Lemma 10 [2]. There exist planar cubic hypohamiltonian graphs on 70+4k vertices
for every k ≥ 0, and on n vertices for every even n ≥ 86.
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Fig. 8: A planar cubic hypohamiltonian graph of order 76.

Lemma 11. There exists a planar cubic hypohamiltonian graph on 76+4k vertices
for every k ≥ 0.

Proof. Fig. 8 shows the graph Λ, which is obviously planar and cubic. Λ contains
precisely one quadrilateral surrounded by four heptagons, while all other faces are
pentagons, octagons or hendecagons. By Lemma 9, Λ is non-hamiltonian. In the
Appendix one can find, for each vertex of Λ, a cycle of length 75 avoiding it. By
applying successively Lemma 8, the proof is complete.

Theorem 8. There exist planar cubic hypohamiltonian graphs on 70 vertices and
on n vertices for every even n ≥ 74.

Proof. Combining Lemmas 10 and 11, the statement is verified. �

3 Open questions

We mention here a few open questions. The first five questions are new and involve
almost hypohamiltonian graphs, the latter three are interesting unsolved problems
concerning hypohamiltonicity.

Problem 1.
Do (planar) cubic almost hypohamiltonian graphs exist?

Problem 2.
Do almost hypohamiltonian graphs of order less than 17 exist, or of order n ∈
{18, 19, 21, 24}?

Problem 3.
What is the smallest order of a (planar) almost hypohamiltonian graph?

Problem 4.
Do 5-connected almost hypohamiltonian graphs exist?

Problem 5.
Thomassen [25] showed that every planar hypohamiltonian graph contains a cubic
vertex. Taking a 4-cycle v1v2v3v4v1, adding the vertex v5, and the edges v1v3, v1v5

15



and v3v5, we obtain a planar 2-hypohamiltonian graph with no cubic vertex. Does
Thomassen’s result extend to almost hypohamiltonian graphs?

Problem 6.
Thomassen [25] asks whether there exists a hypohamiltonian graph with (a) mini-
mum degree 4, or even (b) connectivity 4.

Problem 7.
Máčajová and Škoviera [19] ask whether there exist infinitely many hypohamiltonian
cubic graphs with both cyclic connectivity and girth 7.

Problem 8.
Häggkvist [13] conjectures that every cubic hypohamiltonian graph has six perfect
matchings which together cover every edge exactly twice.

Notes. Very recently, B. D. McKay succeeded to construct several planar cubic
almost hypohamiltonian graphs: three on 68 vertices and twenty-five on 74 (private
communication). This solves Problem 1.

Máčajová and Škoviera use Coxeter’s graph to construct an infinite family of
cubic hypohamiltonian graphs of girth 7 and cyclic connectivity 6, whereas no hy-
pohamiltonian graph of girth greater than 7 is known.

Note that in [13], there is a minor yet confusing error in the definition of hy-
pohamiltonicity: it lacks the demand that a hypohamiltonian graph must be non-
hamiltonian!
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4 Appendix

w w w w w
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w w w w w

w w w w w

w w w w w

A planar almost hypohamiltonian graph of order 47, the exceptional vertex of which is cubic.
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A planar cubic hypohamiltonian graph of order 76 (part 1 of 2).
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A planar cubic hypohamiltonian graph of order 76 (part 2 of 2).
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Errata

In the following, we list all substantial changes made with respect to the published
version, i.e. [J. Graph Theory 79, Iss. 1 (2015) 63–81].
I thank Prof. Gunnar Brinkmann for pointing out several of these omissions.

A recurring mistake has been corrected in which the neighbours of a vertex on a fixed
hamiltonian cycle were not denoted properly. Furthermore, ambiguous notation
when identifying vertices has been replaced.

In Section 2.3, we are not taking into consideration the octagon present in the left-
most graph from Fig. 1. This has been fixed by adding an edge such that the
octagon is subdivided into two pentagons.

In Theorem 1, the proof of the first part of the statement was incorrect, since we
cannot apply Lemma 5 directly to the graph from Fig. 3 (Lemma 5 requires a cubic
quadrilateral, which the graph from Fig. 3 does not possess). The proof has been
corrected. In the second part of the statement, it should be 76, not 74. This has
been corrected in the abstract and Corollary 2, as well.
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