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Abstract. Motivated by the computational complexity of determining
whether a graph is hamiltonian, we study under algorithmic aspects a class
of polyhedra called k-pyramids, introduced in [Zamfirescu and Zamfirescu,
Math. Nachr. 284 (2011) 1739–1747], and discuss related applications.
We prove that determining whether a given graph is the 1-skeleton of a
k-pyramid, and if so whether it is belted or not, can be done in polynomial
time for k ≤ 3. The impact on hamiltonicity follows from the traceability
of all 2-pyramids and non-belted 3-pyramids, and from the hamiltonicity
of all non-belted 2-pyramids. The algorithm can also be used to determine
the outcome for larger values of k, but the complexity increases exponen-
tially with k. Lastly, we present applications of the algorithm, and improve
the known bounds for the minimal cardinality of systems of bases called
foundations in graph families with interesting properties concerning trace-
ability and hamiltonicity.
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1 Introduction
Determining whether a given graph is hamiltonian is a classical NP-complete prob-
lem [Karp, 1972]. Based on this, [Garey et al., 1976] showed that determining
traceability is an NP-complete problem, too. Even restricted to planar, cubic, 3-
connected graphs, determining hamiltonicity remains NP-complete [Garey et al.,
1976]. Thus, it is also NP-complete for the class of polyhedral graphs. In this
contribution, we focus on k-pyramids, a class of polyhedra which generalizes those
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having Halin graphs as 1-skeleta and includes pyramids and prisms. Other gener-
alizations on Halin graphs and investigations of their hamiltonian properties have
already been made by Skowrońska [1983], Skowrońska and Sysło [1987], Skupień
[1990], and Malik et al. [2009].

All graphs in this paper are finite, undirected, connected and contain neither
loops nor edges. Such a graph is called polyhedral if it is planar and 3-connected.
(Recall that there is a bijection between polyhedral graphs and the 1-skeleta of poly-
topes by Steinitz’s famous Theorem [Steinitz, 1922].) In order to study a polyhe-
dral graph G, we will need the concepts of dual graph and independent dominating
set. On one hand, constructing the dual graph is, algorithmically speaking, easily
dealt with. On the other hand, it was shown by Garey and Johnson [1979] that the
problem of finding an independent dominating set of minimal cardinality (MIDS)
is NP-complete. It remains NP-complete if restricted to line graphs [Yannakakis
and Gavril, 1980], bipartite graphs [Corneil and Perl, 1984; Irving, 1991] and du-
ally chordal graphs [Brandstädt et al., 1998]. Polynomial-time algorithms exist for
many families of graphs, e.g. chordal graphs [Farber, 1982], interval and circular-
arc graphs [Chang, 1998], cocomparability graphs [Kratsch and Stewart, 1993], as-
teroidal triple-free graphs [Broersma et al., 1997], and series-parallel graphs [Pfaff
et al., 1984; Grinstead and Slater, 1994]. For more details, see the excellent article
by Manlove [1999]. In the same paper it was shown that MIDS, even restricted to
cubic planar graphs, still is NP-complete.

There exist several results concerning exact exponential time algorithms for
MIDS. For general graphs with n vertices we have O(1.3575n), given in [Gaspers
and Liedloff, 2007], and O∗(3n/2) [Liu and Song, 2006]. In the same paper they
prove that for graphs with degree bounded by 3, we have O∗(20.465n).

Motivated by the computational complexity of determining hamiltonicity and
traceability, and problem 3 raised in [Zamfirescu and Zamfirescu, 2011], we present
two algorithms with O(n4) time complexity that, given a connected finite graph
without loops and multiple edges, (i) determine the minimal value k for which the
graph is the 1-skeleton of a k-pyramid, and (ii) whether the graph is belted or not.
In the remainder of this paper, we will address the following subsequent problems
for a given polyhedral input graph G:
(P1) Is there a natural number k such that G is isomorphic to a k-pyramid?
(P2) Compute k∗, the minimal k for which (P1) holds.
(P3) Let (P2) be satisfied, and k∗ ∈ {2,3}. Is G non-belted?

2 Definitions
A polytope P in R3 is said to be hamiltonian (traceable), if its 1-skeleton – which
is a polyhedral graph – has a hamiltonian cycle (path). Two facets of P will be
called neighbouring, if they share a common edge. A polytope or one of its facets
is called simple, if each of its vertices lies on precisely three edges of the polytope.
The 1-skeleton of a simple polyhedron is a cubic graph, i.e. a graph in which all
vertices are cubic, i.e. have degree 3. We call a face of a planar graph cubic, if all
of its boundary vertices are cubic.
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P is called a k-pyramid [Zamfirescu and Zamfirescu, 2011], if there exist at most
k pairwise disjoint simple facets F1, ...,Fk, called bases, such that every other facet
has some neighbouring base. For k ≥ 2, we call P belted if some pair of bases
has no common neighbouring facet. In particular, we say that a belted 2-pyramid
with basic cycles C1,C2 (i.e., C1 and C2 are disjoint cycles that bound the bases)
is simply belted if every vertex of the unique cycle disjoint from C1∪C2 in P is of
degree 3. Denote the family of the 1-skeleta of (cubic, belted) k-pyramids by Pk
(P3

k , Pk), and write
⋃

k Pk = P . (P3 and P are defined analogously.) Notice
that P1 are precisely the well-known Halin graphs. It was proven by Bondy [1975]
that they are all hamiltonian – even 1-hamiltonian, i.e. they are hamiltonian and
remain hamiltonian when removing an arbitrary vertex.

Consider G ∈Pk. G is a graph with at most k pairwise disjoint cycles called
basic cycles which bound the bases. For G ∈P , define k∗ = k∗(G) = min{k ∈
N : G ∈Pk}. For G /∈P , put k∗(G) = ∞. Call such a set of (k∗) k basic cycles
a (minimal) foundation. Notice that two foundations of the same graph may have
different cardinalities, as for the n-gonal prism, n ≥ 6. Also, observe that minimal
foundations can be unique (see Fig. 1), but need not be (see Figs. 3 and 4); two
minimal foundations may even have no basic cycle in common, as is the case for
the graph in Fig. 3, or the hexagonal prism. Keep in mind that G need not be cubic,
but all vertices on the basic cycles must have degree 3, i.e. their corresponding facets
must be simple.

The dual graph G∗ of a planar graph G has vertices each of which corresponds
to a face of G, and each of whose faces corresponds to a graph vertex of G∗. Two
vertices in G∗ are connected by an edge iff the corresponding faces in G are adjacent.
We shall write g(F) = v, if F is a face of G, and v its corresponding vertex in G∗.

Now let G be a polyhedral graph. We will write G=(V (G),E(G)) with |V (G)|=
n and |E(G)| = m, and put G∗ = (V (G∗),E(G∗)), where V (G∗) = {v1, ...,v f }.
For a vertex v ∈ V (G) we denote by N(v) the set of all neighbours of v, and put
N[v] = N(v)∪{v}. Additionally, let F (F 3) be the set of all (cubic) faces of G. We
have |F |= f and put |F 3|= r.

An independent set X ⊂ V (G) of a graph G contains exclusively vertices that
are not pairwise adjacent. A set Y ⊆ V (G) is called dominating, if every vertex of
G is either in Y , or a neighbour of a vertex in Y . We denote the minimal cardinality
of an independent dominating set in G by i(G).

3 Computing k∗k∗k∗ and testing beltedness
Let G be an arbitrary graph. For G to be polyhedral it must be planar and 3-
connected. We present in the following two algorithms. The first (see Section 3.1)
covers the case when the input graph is known to be cubic, whereas the second (see
Section 3.2) deals with arbitrary input graphs. The purpose of these algorithms is
not to showcase optimal run-times, but to demonstrate that the algorithmic problem
has polynomial complexity. We output k∗, the minimal k for which G ∈Pk (lower
and upper bounds for k are provided in Appendix A). If G /∈P , we output k∗ = ∞.

Test 1: Planarity
We test the planarity of G using the Boyer-Myrvold planarity test and embed-
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ding algorithm (BMEA) [Boyer and Myrvold, 2004], which has a complexity of
O(n). Notice that after the embedding we can traverse the f = 2+m−n ≤ 2n−4
faces of F in O(n) time.

Test 2: 3-Connectedness
For any pair of vertices u,v in G we test whether G \ {u,v} is connected. To

verify whether a graph is connected or not can be done, for example, with a breadth-
first search, which runs in O(n+m) time. Accordingly, this processing step has a
time complexity of O(n3) for planar graphs.

In the following we assume that the considered graph passed these two initial
tests and, in consequence, is polyhedral.

Test 3: 3-Regularity
We determine whether the input graph is cubic in O(n) time. If the graph is

cubic, we apply the specialized algorithm described in Section 3.1, otherwise we
proceed as described in Section 3.2.

3.1 Simple polyhedra
In this instance of the problem, the input graph G is given to be cubic, so by Euler’s
formula we have f = r = n/2+ 2. (P1) is automatically satisfied for cubic graphs
due to the following short argument. Take an arbitrary face F1 ∈F . If F1 does not
neighbour all other faces, take a second face F2 ∈F , with F1∩F2 = /0 (such an F2
exists, as there are faces which do not neighbour F1, and G is cubic). Check whether
all faces have as neighbour F1 or F2. If this is the case, G is a 2-pyramid – if not,
we may add a third face (as before), and so forth. Thus, in a cubic polyhedral graph
we are always able to find a foundation, so there necessarily exists a k for which
G ∈Pk.

We now address (P2) algorithmically. The basic idea of the following algorithm
is to compute i(G∗). Notice that in cubic graphs, MIDS and minimal foundations
are in 1-to-1 correspondence, so for G∈P3 we have i(G∗)= k∗(G). For the general
polyhedral case, this need not be true, see Section 3.2.

Algorithm 1

Step 1
Denote by di the degree of the vertex vi ∈V (G∗), d1 ≥ ...≥ d f . We first verify

whether G ∈P3
1 , which is equivalent to determining whether d1 ≥ f − 1 holds or

not. If this is the case, then G is the 1-skeleton of a 1-pyramid with base g−1(v1),
we output k∗ = 1 and we stop here. Else, we have k∗ ≥ 2 and we continue with
Step 2. Obviously, determining d1 requires only O(m) = O(n) time. Please note
that f is a constant that can be calculated during the construction of the embedding
as well as of G∗ (the construction of the latter has a complexity of O(n logn), see
Appendix A).

Step 2
Now we verify whether G ∈P3

2 in a similar fashion. Put N[vi] = Ni. We have
to check for all i, j ∈ {1, ..., f}, i < j (since all operations are commutative, this
ordering does not change the result, albeit it does change the number of operations),
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the inequality
|Ni|+ |N j|− |Ni∩N j| ≥ n/2+2.

If the above inequality holds, we output the minimal foundation {g−1(vi),g−1(v j)},
k∗ = 2 (due to Step 1 we know that k∗ 6= 1) and stop. Else, we have k∗ ≥ 3, and
continue with Step 3.

Using, e.g., sorted adjacency lists to represent N(v) and N[v], which can be
constructed in O(n2 logn), we can calculate Ni ∩N j in O(n) by applying set in-
tersection algorithms for ordered data structures, see Knuth [1997]; Cormen et al.
[2009]. Consequently, for each index pair i, j each term can be calculated with at
most O(2n−1) = O(n) operations. Thus, we obtain a runtime of

O
(
(2n−1)n(n−1)

2

)
= O

(
n3) .

Step 3
We proceed as above and verify for all i, j,k∈ {1, ..., f}, i< j < k, the inequality

|Ni|+ |N j|+ |Nk|− (|Ni∩N j|+ |N j∩Nk|+ |Nk∩Ni|)+ |Ni∩N j∩Nk| ≥ n/2+2.

Once more, if the above inequality holds, we output k∗ = 3 and stop. Else, we have
k∗ ≥ 4, and continue with Step 4.

As in Step 2, for all O(n3) index triples i, j,k we can calculate each term in
O(n) time. Furthermore, for fixed, small k the number of terms can be considered
a quasi-constant (see Step 4 for arbitrary k). Thus, the decision whether or not a
graph is a k-pyramid, k ≤ 3, has a complexity of O(n4).

Step 4
If we have determined that k∗ ≥ 4, we can naturally generalize the approach

from Steps 1 through 3 and apply the inclusion-exclusion principle. Accordingly,
we give the following characterization of simple k-pyramids.

G ∈P3
k ⇐⇒ ∃K ⊂ {1, ..., f} s.t. |K|= k and ∑

I⊂K
(−1)|I|+1 ·

∣∣∣∣∣⋂
i∈I

Ni

∣∣∣∣∣≥ n/2+2.

Again, using sorted adjacency lists, we can iteratively calculate each term (i.e. in-
tersection) in O(n) time. However, for arbitrary k we cannot consider the number of
terms a quasi-constant and must take into account that the number of terms grows
exponentially. For each subset K we have

( f
k

)
sums, each of which consists of 2k

terms, thus leading to a total of
( f

k

)
2k terms and a total complexity of

O
(

n
(

f
k

)
2k
)
= O

(
n
(

2n−4
k

)
2k
)
.

In light of the fact that [Zamfirescu and Zamfirescu, 2011] only provides appli-
cable Theorems for k ≤ 3, we may choose to stop the algorithm if it decided that
k∗ ≥ 4. Notice that we determine whether k∗ is 1, 2 or 3 in O(n4) time. However, in
general, the number of terms and consequently the asymptotic runtime of the pre-
sented algorithm grows exponentially with k as well as n, which could be expected,
because the related problem, i.e. MIDS, is NP-complete.

For (P3), please see Section 3.3.
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3.2 Arbitrary polyhedra
Here, we must first address the question whether there exists a natural number k
such that G is a k-pyramid.

Algorithm 2

Step 1
We begin by treating (P1) and (P2). Recall that F 3 = {F1, ...,Fr} ⊂F , with

g(Fi) = wi and {wi}r
i=1 =W ⊂V (G∗). There are several special cases:

(i) If r = 0, i.e. there are no cubic faces, we may stop here, and output that there
is no k such that G is isomorphic to (the 1-skeleton of) a k-pyramid, i.e. k∗ = ∞.

(ii) If r ≥ f − 2, i.e. all faces are cubic, then G is cubic (and definitely a k-
pyramid for some k) and we continue with Algorithm 1 from Section 3.1.

(iii) Every face must have at least two neighbouring vertices of degree 3 on its
boundary. If this is not the case, G cannot be isomorphic to a k-pyramid, which we
output as k∗ = ∞.

Please note that since we can traverse all faces in O(n) and all correspond-
ing nodes of each face in O(n) as well, the runtime of the steps above is trivially
bounded by O(n2).

If none of the above occurs, we continue with Step 2.

Step 2
In contrast to the cubic case, put N[wi] = Ni, and we have

G ∈Pk ⇐⇒ ∃K ⊂ {1, ...,r} : |K|= k and ∑
I⊂K

(−1)|I|+1 ·

∣∣∣∣∣⋂
i∈I

Ni

∣∣∣∣∣≥ n/2+2.

As in Algorithm 1, we search in G for an independent dominating set of minimal
cardinality D, and we first verify whether |D| = i(G∗) = 1, then whether |D| =
i(G∗) = 2, etc. Notice that we have the additional condition D ⊂W . If such a set
D is found, we output that G ∈P|D|, and we have |D| = k∗. If no such set can be
found, we output k∗ = ∞.

Accordingly, we get the corresponding complexity of

O
(

n
(

r
k

)
2k
)
= O

(
n
(

f
k

)
2k
)
,

see Step 4 of Algorithm 1.

3.3 Testing Non-Beltedness
Assume that for an input graph G we have determined with the Algorithms above
that G ∈Pk∗ . We can now treat (P3). Let C be the set of all minimal foundations
of G, and denote by dG the shortest path metric on G. Algorithms 1 and 2 are con-
structive, so we know of at least one minimal foundation. Theoretically, due to the
nature of the Theorems from Zamfirescu and Zamfirescu [2011], we are interested
to know in which cases G is non-belted. Clearly,

G is not belted ⇐⇒∃C ∈ C ∀B1,B2 ∈ C : dG∗(g(B1),g(B2)) = 2,
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which we rewrite as the algorithmically more useful characterization

G ∈P ⇐⇒ ∀C ∈ C ∃B1,B2 ∈ C : dG∗(g(B1),g(B2))≥ 3.

This allows us to efficiently test the beltedness of G by going through all pairs
of bases B1,B2 (the number of pairs is trivially bounded above by

( f
2

)
) of an ar-

bitrary minimal foundation, constructed during Algorithm 1 or 2, and computing
dG∗(g(B1),g(B2)) in the dual graph G∗. If none of these distances exceeds 2, then
the k-pyramid is non-belted.

Naturally, testing for each of the O(
( f

2

)
) = O(n2) pairs of bases B1 and B2

whether or not it has a distance of at least 3 can be implemented using breadth-
first-search on the dual graph with complexity O(n2). Thus, the resulting total com-
plexity is O(n4).

4 Applications: Small kkk-Pyramids
As first application of the algorithms presented in Section 3, we are now able to
decide whether a given graph is a k-pyramid, and thereafter reliably compute k∗.
Let us recall several Theorems from [Zamfirescu and Zamfirescu, 2011] which will
be of great use.
Theorem A. Every non-belted 2-pyramid is hamiltonian.
Theorem B. Every simply belted 2-pyramid is hamiltonian.
Corollary. Every simple 2-pyramid is hamiltonian.
Theorem C. Every 2-pyramid is traceable, but not necessarily hamiltonian.
Theorem D. Every non-belted 3-pyramid is traceable.
Theorem E. There exist simple non-hamiltonian 3-pyramids.

We present three applications of our algorithms. We give bounds for k-pyramids
with interesting properties concerning traceability and hamiltonicity. For a summa-
rized view of all known lower and upper bounds in various situations, please see
Section 5.

4.1 Non-traceability
Let G be a non-traceable k-pyramid. By Theorem C, we have k ≥ 3. In the non-
belted case, we have k ≥ 4 due to Theorem D.

Theorem 1. There exist non-traceable 5-pyramids.

Proof. In Fig. 1 we present a non-traceable (belted) 5-pyramid G, and recall that
there is no non-traceable k-pyramid known for k≤ 4. G is based on the well-known
Herschel graph. The algorithm from Section 3.2 determined the foundation shown
in Fig. 1. In this particular case it is easy to see that it is of minimal cardinality, as
it corresponds to the unique independent dominating set of G∗.

Let us prove the non-traceability of G. Contracting the basic cycles (which in
this case are exclusively triangles) to vertices yields a graph G′ with the property
that G is non-traceable iff G′ is non-traceable. But G′ is precisely a well-known
variant of Herschel’s graph, which is a non-traceable polyhedral graph. �
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Fig. 1: A non-traceable 5-pyramid, and its unique minimal foundation marked by bold edges.

If we additionally require G to be cubic, we have the following.

Theorem 2. There exist simple non-traceable 7-pyramids.

Proof. The graph G from Fig. 2 (a) is non-traceable, see [Zamfirescu, 1980].
Fig. 2 (b) shows G and a MIDS of G∗, D, which corresponds to a minimal founda-
tion in G.

(a) (b)
Fig. 2: (a) shows a non-traceable simple 7-pyramid G. (b) depicts G, its dual G∗, and as bold dots a

MIDS of G∗.

As |D| = 7 and Algorithm 1 confirms that there exists no foundation of G of
cardinality less than 7, G is a 7-pyramid. �

4.2 Non-hamiltonicity
In this Section, all graphs will be non-hamiltonian. For k-pyramids in general,
we have the following. [Zamfirescu and Zamfirescu, 2011, Fig. 9] presents a 2-
pyramid (1-pyramids are hamiltonian [Bondy, 1975]); this also covers the belted
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case. In the cubic case, the Corollary and Theorem E, plus the graph from Fig. 2,
yield k = 3. For non-belted k-pyramids (simple or not), we only have a bound given
by Theorem A, namely k ≥ 3. For belted simple k-pyramids, we have k = 3 due to
the graph from Fig. 4 and the Corollary.

Theorem 3. All simple 3-pyramids on 38 or fewer vertices are hamiltonian.
Furthermore, on 42 vertices there exist non-hamiltonian simple 3-pyramids.

Proof. It is a classical result [Holton and McKay, 1989] that all cubic polyhedral
graphs on 36 or fewer vertices are hamiltonian. On one hand, there exist exactly
six cubic polyhedral non-hamiltonian graphs of order 38, see [Aldred et al., 2000,
Fig. 1], and we omit here the straightforward verification using Algorithm 1 that
indeed none of these six graphs is a k-pyramid for k ≤ 3. On the other hand, there
are many non-hamiltonian simple 3-pyramids on 42 vertices [Aldred et al., 2000].
One such graph is depicted in Fig. 3. �

It remains to be settled whether there exist simple non-hamiltonian 3-pyramids
on 40 vertices.

(a) (b)
Fig. 3: The graph NH42.b from [Aldred et al., 2000, Fig. 2] on 42 vertices, also known as

Grinberg’s graph, with (a) and (b) showing two distinct minimal foundations.

4.3 Hypohamiltonicity
A graph is called hypohamiltonian, if it is non-hamiltonian, but by deleting an ar-
bitrary vertex it becomes hamiltonian. Here we briefly discuss a special case of
the results which can be found in Section 4.2, as every hypohamiltonian graph is
non-hamiltonian.

Theorem 4. There exist hypohamiltonian 6-pyramids.

Proof. Fig. 4 shows a hypohamiltonian 6-pyramid (see [Wiener and Araya,
2011]), which has 70 vertices.
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(a) (b)
Fig. 4: The Wiener-Araya graph [Wiener and Araya, 2011, Fig. 1] on 70 vertices is a

hypohamiltonian 6-pyramid. (a) and (b) show two distinct minimal foundations.

The proof that the graph from Fig. 4 is indeed hypohamiltonian can be found in
[Wiener and Araya, 2011]. The two minimal foundations shown in Fig. 4 (bounded
by bold edges) were found using Algorithm 1, see Section 3.1. �

5 Discussion
The following table shows lower and upper bounds for the minimal k for which
there exists a k-pyramid with the mentioned attributes. The lower bounds can be
derived from Theorems A through E and the Corollary, and the upper bounds from
Section 4. Where no upper bounds are given, there may not exist a k satisfying the
imposed conditions.

non-traceable non-hamiltonian hypohamiltonian
non-belted belted non-belted belted non-belted belted

polyhedral k ≥ 4 3≤ k ≤ 5 k ≥ 3 k = 2 k ≥ 3 2≤ k ≤ 6
cubic k ≥ 4 k ≥ 3 k ≥ 3 k = 3 k ≥ 3 3≤ k ≤ 6

6 Open Problems
Several interesting questions remain unanswered. We select the following.
1. Is every 3-pyramid traceable?
2. Is there an efficient way to count (minimal) foundations?
2. Is deciding whether a given polyhedron is a k-pyramid an NP-complete problem?

10



A Bounds

A.1 Lower Bound

Using the embedding provided by the BMEA, we compute the dual graph G∗, which
can be done in O(m logm) = O(n logn) time (cf. Kahng et al. [2008]).

Firstly, list all cubic faces F 3 = {F1, ...,Fr}, and put {w1, ...,wr} = W , where
g(Fi) = wi, 1 ≤ i ≤ r. In order to do this in O(n · f ) = O(n2) time, we proceed
as follows. Firstly, each vertex is marked with its degree – actually, this is done
during graph construction; however, even when done separately the complexity is
at most O(n2), depending on the basic graph data structure. Secondly, each vertex
is marked with the adjacent faces, which is done during the BMEA. This implies a
runtime of at most O(n · f ) to cycle through all faces and their respective adjacent
vertices. We remark that during this procedure, the boundary vertices of all faces
are stored in an ordered manner – this will be of use later, but implies additional
costs for sorting; thus, we practically get a complexity of O((n logn) · f ). Now, if G
possesses a foundation C (for cubic graphs this is guaranteed, see 3.1), by definition
C ⊂F 3.

Compute the degrees {deg(wi) = di}r
i=1 of the vertices of G∗, with d1 ≥ ...≥ dr.

We then have

G ∈Pk =⇒
k

∑
i=1

di + k ≥ f .

This is a useful test in order to determine whether G has any chance of being a
k-pyramid or not. This step also provides a set of candidate vertices in G∗, the
associated faces of which may form a foundation of G.

A.2 Upper Bound
We have k ≤ f/4, as every base has at least three neighbouring facets.
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