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Abstract. We present a novel method of constructing non-obtuse
and acute triangulations of planar convex n-gons, improving ex-
isting bounds presented in [L. Yuan, Discrete Comput. Geom. 34,
697-706 (2005)] for 6 ≤ n ≤ 11 and 6 ≤ n ≤ 56, respectively.
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Introduction

A triangulation of a 2-dimensional space means a collection of (full) tri-
angles covering the space such that the intersection of any two triangles
is either empty, or a vertex or an edge. Furthermore, a triangulation is
called geodesic, if all its triangles are geodesic, meaning that their edges
are segments, i.e. shortest paths between the corresponding vertices. In
this paper we shall always refer to geodesic triangulations. We have an
acute triangulation if in each appearing geodesic triangle all angles are
acute. The triangulation is a right one if each triangle is right, i.e. has two
angles acute, and one right. Finally, the triangulation is called non-obtuse
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if each triangle in it is acute or right. For several results concerning the
various kinds of triangulations mentioned above see the survey [15] by T.
Zamfirescu.

In 1960, Y. D. Burago and V. A. Zalgaller [2] proved the existence of
acute triangulations for polyhedral surfaces, without giving any specific
upper bounds on the number of necessary triangles. Very recently Saraf
gave in [10] a much simpler construction for proving the Burago-Zalgaller
theorem.

Outside Russia, this result of Burago and Zalgaller remained – so it
seems – unobserved, and the problem of finding the exact minimum size of
the acute triangulation of a given convex polygon had one of its origins in a
problem of Stover reported in 1960 by Gardner in his Mathematical Games
section of the Scientific American (see [4], [5]). Stover asked whether a
triangle with one obtuse angle can be cut into smaller triangles, all of them
acute. By twofold coincidence, in the same year, Goldberg proposed the
same problem in the American Mathematical Monthly (E1406, see [6]),
and Burago and Zalgaller [2] gave an answer by proving that any obtuse
triangle can be triangulated into seven triangles, which is best possible.

Twenty years later Cassidy and Lord [3] considered acute triangulations
of the square, finding a construction with eight triangles, which is best pos-
sible. In 2000, T. Hangan, J. Itoh, and T. Zamfirescu proved in the paper
[7], among other things, that this is true for any rectangle, and the number
is best possible. In the same year, H. Maehara investigated acute triangu-
lations of quadrilaterals [8] and showed that any convex quadrilateral can
be triangulated with at most nine acute triangles; it is unknown whether
this bound is optimal, as all known examples need at most eight triangles.

Concerning convex pentagons Yuan showed in [12] that to acutely tri-
angulate a pentagon one requires at most 54 acute triangles.

For hexagons the best estimate so far is 9240, derived from the up-
per bound (greatly improved compared to Maehara’s previous bound) con-
tained in [11].

Hence, we ignore the best upper bound of the minimal size of an acute
triangulation, for n ≥ 4. While for n = 4, this is eight or nine (we recall
that for convex quadrilaterals the precise bound is unknown), and for n = 5
we have the fairly small bound 54, there is a huge gap between the case
of pentagons and that of hexagons. In [11] it is proved (by using methods
from [1]) that an arbitrary n-gon P admits a non-obtuse triangulation of
size 106n − 216, which may be transformed into an acute triangulation of
P of size 22(106n− 216).

The goal of this paper is to diminish the aforementioned gap. In fact
we provide an algorithm which yields better upper bounds for all n from 6
to 56. For the hexagonal case we obtain an acute triangulation requiring
at most 102 triangles.
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Right Triangulations

We provide here a different approach, which improves the upper bound
for the size of a non-obtuse triangulation of a convex n-gon for the cases
where 6 ≤ n ≤ 11.

Theorem 1. Let P be a planar convex n-gon with n ≥ 6. Then P
admits a right triangulation of size at most

rn =
2
3
n3 + n2 − 47

3
n + 22.

Proof. Let P 1 be a convex n-gon, with vertices {κ1
i }n

i=1, and Bi be the
bisector of the angle (which is less than π) in κ1

i . Define (indices are taken
modulo n)

ν2
i = Bi ∩Bi+1 (1 ≤ i ≤ n) and δ = min

1≤i≤n,
x∈κ1

i κ1
i+1

‖ν2
i − x‖.

Now, we consider the parallel body P 1(ε) of all interior points of P 1 at
distance at least ε from its boundary. This is obviously an n-gon with sides
parallel to those of P 1 and vertices on the Bi’s, as long as ε < δ. For
ε = δ, P 2 = P 1(δ) is an m-gon with m < n, a line-segment or a point. We
iterate this procedure until P k (with k ≤ n − 1) is either a triangle, or a
line-segment or a point.

For each vertex v of P j let V (v) be the set of points on bdP j−1 closest
to v (2 ≤ j ≤ k). We consider all half-lines starting at v, and meeting
V (v). We do this for all vertices of P j (2 ≤ j ≤ k). Moreover, if P k is a
triangle with largest angle at w, we also consider the half-line starting at
w which is orthogonal to the opposite side and meets it.

Thus, we obtain a tiling of P 1 into right triangles and rectangles. Now
the rectangles are easily cut into right triangles. We obtain

4n− 12 +
n∑

j=5

(2j − 2) · (n− j + 1) =
1
3
n3 − 25

3
n + 16

rectangles and

2 +
n∑

i=4

2i = n2 + n− 10

right triangles, whence altogether

2
3
n3 + n2 − 47

3
n + 22
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right triangles. ¤

Employing the technique used in the proof of Theorem 1 we shall im-
prove existing bounds for the minimum size of acute triangulations of con-
vex n-gons for 6 ≤ n ≤ 56. To achieve this we shall also use the following
remark and lemmas.

Remark. Let us call two rectangles with disjoint interiors but sharing
an edge a rectangle pair. Say we have two rectangles R1 = conv{a, x, y, d}
and R2 = conv{b, x, y, c} which share the edge xy, forming a rectangle
pair. In [7] we learn that to acutely triangulate a rectangle, we need eight
triangles. Without elaborating (for details, see [7]), we may triangulate
R = R1 ∪ R2 acutely into eight triangles, using x and y as vertices of the
triangulation. We note that xy is not an edge of the triangulation of R.
For an illustration, see the rectangle pair {Rj , Qj} from Fig. 1.

From [8] and several proofs in [12] we extract Lemmas 1 and 2, respec-
tively.

Lemma 1. Let Q = conv{a, b, c, d} be a convex quadrilateral. Then
Q admits an acute triangulation of size at most 9, featuring at most four
vertices on bdQ \ {a, b, c, d}.

Lemma 2. Let Γ = conv{a, b, c, d, e} be a convex pentagon. Then Γ
admits an acute triangulation of size at most 54, featuring at most seven
vertices on bdΓ \ {a, b, c, d, e}.

Acute Triangulations

The following theorem is the main result of this paper.

Theorem 2. Let P be a planar convex n-gon with n ≥ 6. Then P
admits an acute triangulation of size at most an, where

an =





2
3
n3 + 2n2 − 71

3
n + 28 for even n

2
3
n3 + 2n2 − 101

3
n + 88 for odd n.

Proof. Let P 1 be a planar convex n-gon with n ≥ 6. In this first part
we shall prove our result for even n. We proceed as described in the proof
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of Theorem 1, and obtain the finite sequence of polygons P 1, ..., P k−1.
We shall restrict ourselves to the generic case where V (v) consists of at
most 3 points (no three bisectors have a common point), and moreover
cardV (v) = 3 for just one vertex v (which we call v′) because otherwise
k obviously becomes smaller and so becomes the size of the triangulation.
(Notice, also, that {an}∞n=6 is a monotone sequence.) Then k = n− 2.

Assume Pn−3 is a quadrilateral. We triangulate Pn−3 acutely with nine
triangles using Lemma 1, generating at most four new vertices v1, ..., v` ∈
bdPn−3 (` ≤ 4). With the notation from the proof of Theorem 1, we
consider for each vertex v of P j two half-lines starting at v and meeting
V (v) (2 ≤ j ≤ n − 3); for j = 2 and v = v′, although V (v′) consists of
three points on three consecutive sides of P 1, we do not join v′ with the
middle point v′′ of V (v′). Moreover, we consider the half-lines starting at
vi (i ≤ `), orthogonal to bdPn−3 in a neighbourhood of vi, and disjoint
from the interior intPn−3 of Pn−3.

The next step is illustrated in Fig. 1. Let a chain be a maximal fam-
ily of rectangles C1 = R1, ..., Rq ⊂ Pm \ intPm+1, 1 ≤ m ≤ n − 4, for
which Ri has a common edge with Ri−1 and Ri+1, 2 ≤ i ≤ q − 1. (The
union of their boundaries includes some edge of Pm+1.) We now explain
this step by illustrating it within P 1 \ intP 3, from where we take two
chains with non-empty intersection C1 = R1, ..., Rq ⊂ P 2 \ intP 3 and C2 =
Q0, ..., Qq+1 ⊂ P 1 \ intP 2 (which shall be called a double chain), see Fig. 1.
In this situation we triangulate acutely – following the Remark – precisely
one rectangle pair in the double chain, consisting of one rectangle from C1

and one from C2, namely Rj and Qj respectively, where j can be chosen
arbitrarily in {1, ..., q}. Subsequently, we tile each of the remaining rec-
tangles R1, ..., Rj−1, Rj+1, ..., Rq and Q0, ..., Qj−1, Qj+1, ..., Qq+1 into two
right triangles in the way shown in Fig. 1. Now, apply the procedure de-

P 1

P 2

P 3

Q0 Q1 Qj Qq Qq+1

R1 R2 Rj Rq−1 Rq

Fig. 1: Acute triangulation of two chains.

scribed above as follows. For n = 6 there are in total four double chains
which are triangulated as shown above, and one chain consisting of two
rectangles, which we triangulate as a rectangle pair (see the Remark); for
n = 8 we first triangulate as before the chains of P 3. Then we are left
with six double chains and one chain consisting of two rectangles, which
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we know how to triangulate. In this manner we triangulate non-obtusely
any n-gon P 1, for even n.

Finally, we render the triangulation acute by applying gentle shifts to
certain vertices. If the shifts are gentle enough, no acute angles which
are affected by these shifts become right or obtuse. We shall explain the
process on angles within P 1 \ intP 2, and then iterate. Take all right angles
around vertices of P 1. Consider, for instance, {g} = (bdP 1) ∩ Qq+1 ∩ Qq

(see Fig. 1). By shifting g in the direction of (bdP 1) ∩Q0 ∩Q1, we render
all angles around g acute (note that by using this shift also all angles within
P 1\intP 2 around (bdP 2)∩Qq+1∩Qq become acute). Iterate this procedure
for P t \ intP t+1 (2 ≤ t ≤ n− 4), and all angles within P 1 become acute.

One last thing remains to be proven: that by not joining v′ to v′′ no
angles become non-acute. Let ab be the edge of the polygon P 1 containing
v′′. Now let us assume that ∠av′b ≥ π/2, which implies ∠v′ba + ∠bav′ ≤
π/2. Let c be adjacent to a and d adjacent to b (c and d exist as n ≥ 6).
Consider the half-lines La and Lb starting in a and b, respectively, which
go through c and d, respectively. Note that by putting δ = ‖v′ − v′′‖ we
have

min
x∈La

‖v′ − x‖ = min
y ∈Lb

‖v′ − y‖ = min
z ∈ ab

‖v′ − z‖ = δ.

Let a′ (b′) be the projection of v′ onto the edge ac (bd), and put

Ω = P 1 \ (conv{a′, a, v′′, v′} ∪ conv{b′, b, v′′, v′}).
As at least one intersection point of consecutive bisectors lies in Ω, and as
we have for any point q ∈ Ω the inequality min

x∈P 1
‖q−x‖ ≤ δ, a contradiction

is obtained.

Let us now compute the number of triangles used – as this is an upper
bound, the triangulation size at every step is maximal.

Firstly, nine triangles are required to triangulate the quadrilateral Pn−3

acutely. Secondly, the total number of rectangles is

A1 =
n−5∑

i=0

(2i + 1) +
n−5∑

j=1

2j(n− 4− j) =
1
3
n3 − 49

3
n + 44

plus
A2 = 4n− 16,

where A1 is the number of all rectangles before considering the four ad-
ditional vertices on the boundary of the central quadrilateral Pn−3 which
appear when triangulating it, while A2 is precisely the number of the ad-
ditional rectangles. This yields

2(A1 + A2) =
2
3
n3 − 74

3
n + 56
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triangles. Thirdly, we now replace – as described in the third paragraph of
this proof – the triangulations of rectangle pairs which have been triangu-
lated into four triangles (by simply taking two diagonals) with triangula-
tions as constructed in the Remark. This yields a total of

4

n
2−2∑

j=1

(2j + 3) = n2 − 16

additional triangles. Lastly, we count the triangles which occur directly as
triangles:

2

(
n∑

i=5

i

)
− 1 = n2 + n− 21.

Hence, the acute triangulation of a planar convex n-gon with even n requires
at most

an = 9 +
2
3
n3 − 74

3
n + 56 + n2 − 16 + n2 + n− 21 =

2
3
n3 + 2n2 − 71

3
n + 28

triangles.

We now prove our result for the remaining, odd values of n. We proceed
exactly as described in the proof of the even case, until we obtain the pen-
tagon Pn−4. We triangulate Pn−4 acutely with 54 triangles using Lemma
2, generating at most seven new vertices v1, ..., vj ∈ bdPn−4 (j ≤ 7). As in
the proof of the even case, consider now ui ∈ bdP 1 such that the distance
between vi and ui is minimal (1 ≤ i ≤ j), and draw the line-segments viui.

The rest of the second part of the proof is perfectly analogous to the
even case. Still, as this construction is based on triangulating the pentagon,
a different formula is obtained, namely

an =
2
3
n3 + 2n2 − 101

3
n + 88,

and this completes the proof. ¤

Let us now shift our focus from polygons to double polygons. Defining
a more general term, we start with a planar convex set C and call the
double convex set 2C the (degenerate convex) surface homeomorphic to
the sphere, which is the union of two planar convex sets isometric to C,
the boundaries of which are identified in accordance with the isometry.

There are several papers providing triangulations of certain double poly-
gons, the first of which contains a theorem on acute triangulations of the
double triangle, offering for the size the optimal upper bound 12 [14]. A
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further result treats the case of the double convex quadrilateral, where at
most 20 acute triangles are needed [13]. For the case of double convex
pentagons, the best upper bound so far is 76 [12].

Using Theorems 1 and 2, we obtain further upper bounds for non-obtuse
and for acute triangulations of double convex n-gons.

Theorem 3. Let P be a convex n-gon with n ≥ 6. Then 2P admits a
right triangulation of size at most 2rn, and an acute triangulation of size
at most 2an.

Proof. The needed triangulation is obtained directly from that of P .
What is essential to remark is the following. In order to obtain a true
triangulation, no triangle of the triangulation of P may have three vertices
on bdP . This is dealt with by our construction, because from each vertex
of P a bisector departs, and thus, avoiding a situation like the one just
described. ¤

Thus, any double hexagon admits a triangulation using at most 204
acute triangles.
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