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0. Introduction

A triangulation of a two-dimensional space means a collection of triangles (considered
full, i.e. consisting of all points belonging to or surrounded by the three sides) covering
the space such that the intersection of any two triangles is empty, or a vertex, or an
edge (of both triangles). Triangulations are particular instances of dissections (for
which the above intersection condition reduces to requiring only empty interior, and
any kind of polygons can be considered instead of triangles).

A triangulation is geodesic if all of its triangles are geodesic, meaning that their
edges are segments, i.e. shortest paths between the corresponding vertices. In this
paper we shall always refer to geodesic triangulations. In [18], Colin de Verdière shows
how to transform a triangulation of a compact surface of non-positive curvature into a
geodesic triangulation. The corresponding planar problem was treated by Wagner [75].
See also [29] and [70].

A triangulation is non-obtuse [acute] if all angles within its triangles are at most
[strictly less than] π/2. A balanced triangulation is an acute triangulation with all
angles measuring more than π/6, and a right triangulation is defined as one where all
triangles are right, a special case of a non-obtuse triangulation.
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While we mainly focus on recent results about acute triangulations in the Euclidean
plane, we also survey various findings on non-obtuse triangulations on surfaces, again
concentrating on new developments.

The problem may also be treated in higher dimensions. There, one asks for triangu-
lations with simplices (in three dimensions sometimes called tetrahedrizations) having
acute or non-obtuse dihedral angles. For results therein, many of which are fascinat-
ing, read the survey [12] by Brandts, Korotov, Kř́ıžek, and Šolc, which also includes
interesting research problems. In this direction, see also the paper [26] by Eppstein,
Sullivan, and Üngör, which reveals the first known acute tetrahedrization of R3 and
the 2009 breakthrough by VanderZee, Hirani, Zharnitsky, and Guoy [73], which gave
an acute tetrahedrization of the cube. Kopczyński, Pak, and Przytycki [52] give a good
summary of recent activity on higher-dimensional triangulations.

Concerning the further organization of this survey: the first part deals mainly
with acute triangulations of polygons, covering existence, asymptotic upper bounds,
mesh generation algorithms, concrete upper bounds, and a detour into dissections and
acute triangulations of planar graphs. The second part surveys results on triangulating
surfaces, reviewing what is known for Platonic surfaces, double planar convex bodies,
Riemannian manifolds, and various other classical objects from geometry such as the
sphere and the Klein bottle.

In order to give a taste of techniques typically used in the results featured in Sec-
tions 2.1, 2.3 and 3, we (i) give a short overview of the methods used by Saraf [65]
to prove the deep Burago-Zalgaller Theorem [14] (see Section 2.1), where she uses a
result of Yuan [76] which we discuss in detail. Yuan’s Theorem provides a method to
transform a non-obtuse triangulation of a polygon into an acute one. Furthermore, (ii)
we reproduce from [38] a combinatorial proof of the fact that the size of the smallest
acute triangulation of the boundary of the cube is 24 (Theorem 3.1.1) and (iii) exhibit
further geometric aspects of these proofs by showing that every flat Möbius band ad-
mits an acute triangulation of size at most 9 (Theorem 3.4.3), where we followed [81].
Lastly, in Section 4, we give a list of eight open problems.

The concept of this survey rests on two pillars. On one hand we see the purely
geometric aspect of treating geodesic triangulations, on the other the applications. In
some applications, including mesh generation, only those triangulations of polyhedral
surfaces are relevant which use all edges of the polyhedron as edges of the triangulations.
However, in this survey we do not impose this restriction and treat the more general
case in which we can find pieces of edges or even vertices of a polyhedral surface in
interiors of triangles of a triangulation.

1. Motivation and History

Interest in non-obtuse and acute triangulations is widespread, and we shall indicate
here only a fraction of the papers requiring “nicely” triangulated domains. What
“nicely” means varies; it is often related to conditions concerning the angles of the
triangulation. An important motivation is anchored in numerical analysis, where very
flat and very sharp angles are undesirable – see the classical papers [5], [32] and [68].
Let us now give samples from various fields of mathematics that necessitate (or yield
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stronger results on) domains that can be non-obtusely or acutely triangulated.
To our knowledge, one of the earliest instances of interest in non-obtuse triangu-

lations was published in 1953, when MacNeal [55] studied the discretization of partial
differential equations. In 1973, working on the proof of the discrete maximum prin-
ciple, Ciarlet and Raviart [17], and later Strang and Fix [69] and also Santos [64],
were interested in non-obtuse triangulations. Vavasis [74] studied an elliptic boundary
value problem, where the error bound of the linear system depends on the angle of the
triangulation employed; thus, a non-obtuse triangulation was desirable.

Acutely triangulating certain domains often yields stronger results, as can be seen in
Elliott’s and Stuart’s 1993 paper [24], where the global dynamics of discrete semilinear
parabolic equations were studied, and in Sethian’s 1999 paper [66], which investigated
the fast marching method (i.e. solving the Eikonal equation). Recently, Erickson, Guoy,
Sullivan, and Üngör showed interest in acutely triangulated domains, presenting in
[27] an algorithm that constructs meshes suitable for spacetime discontinuous Galerkin
finite-element methods. In an earlier paper [71] on the same subject, the triangulation
was in fact required to be acute.

The theoretical (i.e. non-algorithmic) investigation of acute triangulations began
circa 1960, with two dissimilar directions of attack: On one hand we have the deep
Burago-Zalgaller Theorem [14], which proves the existence of acute triangulations on
polyhedral surfaces – unfortunately, following their argument leads to a huge number
of triangles and gives no practical information on how (non-huge) triangulations might
be constructed in practice. On the other hand, we have the problem of finding the
exact minimum size of the acute triangulation of a given convex n-gon, especially for
small n. The latter started with two identical problems, one by Stover, reported by
Gardner in his Mathematical Games section of the Scientific American, and the other
proposed by Goldberg in the American Mathematical Monthly, both in 1960. More
about this appears in Section 2.3.

Further developments and more detailed accounts of each line of research will be
given in each section separately. Also, additional definitions that are essential for
understanding certain results will be mentioned when needed.

2. Polygons

2.1. Existence and asymptotic upper bounds

In 1960, Burago and Zalgaller [14] – and 49 years later, with a simpler construction,
Saraf [65] – proved the existence of acute triangulations for general polyhedral surfaces.
It is notable that, in both papers, no specific upper bounds on the number of triangles
needed are given. A corollary of Burago’s and Zalgaller’s work [14] on embedding an
abstract polyhedron in R3 is as follows.

Theorem 2.1.1 (Burago and Zalgaller [14]). Polygons (possibly with holes) and
polyhedral surfaces can be acutely triangulated.

We now give a short account of Saraf’s proof of this fundamental result. The main
challenge she tackled was the following. Consider a polygon that has been subdivided
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into polygonal regions. We now want to triangulate with non-obtuse triangles all of
these regions so that their boundary vertices coincide (to get a triangulation, not a dis-
section, of the initial polygon). Saraf employed here the divide-and-conquer technique:
an algorithm that recursively divides a given problem into subproblems of related type
until the subdivided problems become simple enough to be solved directly. In this way
she obtained a non-obtuse triangulation of a general polyhedral surface by subtriangu-
lating each triangle separately while taking care that their boundary vertices coincide.
Combining the aforementioned with results by Maehara [57] and Yuan [76], which as-
certained methods of transforming a non-obtuse triangulation of a given polygon into
an acute one, she obtained an acute triangulation of an arbitrary polyhedral surface.
We will give a sketch of Yuan’s method (versus the one shown in [57]) for transforming
a non-obtuse triangulation T of a polygon Γ into an acute one [76]. We include some
detailed parts showing the main tools used by Yuan. Several arguments are akin to
Saraf’s divide-and-conquer approach.

For any triangle T , the segments joining the midpoints of the sides divide it into
four congruent triangles similar to T . This is an elementary subdivision of T . The first
step is to subdivide T into a tiling T1 according to the following two rules. Rule 1:
Any acute triangle in T will be divided into four acute triangles by an elementary
subdivision. Rule 2: Any right triangle in T will be divided into a rectangle and two
right triangles as shown in Fig. 1, where the point on each side is its midpoint.

a

b c
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Fig. 1: The elementary subdivision of a right triangle.

A face-to-face tiling T1 of Γ is obtained, consisting of a family S1 of acute triangles,
a family R1 of rectangles and a family F1 of right triangles; T1 = S1 ∪R1 ∪ F1. Each
triangle F ∈ F1 is obtained according to Rule 2 (see Fig. 1) and has a rectangle R
as a neighbour. This rectangle R is called the basic rectangle of F , and the common
edge of F and R is called the basic edge of F . Thus, any F ∈ F1 has exactly one basic
rectangle and one basic edge.

In the second step we subdivide T1 into T2, again following two rules. Rule 1:
Apply an elementary subdivision to every element in S1 ∪ F1. Rule 2: Triangulate
every rectangle in R ∈ R1 as follows. Take the midpoints of two opposite sides and
join them. This cuts R into two rectangular halves. Now apply the triangulation from
Fig. 6 (which applies to any rectangle) to each half. The result is shown in Fig. 2. This
is a basic triangulation of R.

We obtain a non-obtuse triangulation T2 of Γ. It remains to show that T2 can be
converted into an acute triangulation of Γ. Let S2, R2 and F2 denote all triangles in
T2 obtained from S1,R1,F1, respectively. Every triangle in S2 ∪ R2 is acute. Hence,
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Fig. 2: The basic triangulation of a rectangle.

we need only consider the triangles in F2. The right triangles in F2 are obtained from
F1 by elementary subdivision, so we can classify them according to their correspond-
ing right triangles in F1. For any acute triangle [right triangle] S ∈ S1 [F ∈ F1], let
φ(S) [φ(F )] denote the family of four acute triangles [four right triangles] obtained
from the elementary subdivision of S [F ]. Similarly, for any rectangle R ∈ R1, let
φ(R) denote the family of sixteen acute triangles obtained from the elementary sub-
division of the basic triangulation of R. We call the triangle in φ(F ) that has empty
intersection with the basic edge e of F the opposite triangle with respect to e. If
S1 = {S1, S2, ..., St},F1 = {F1, F2, ..., Fn}, and R1 = {R1, R2, ..., Rm}, then

S2 =
t∪

i=1

φ(Si), F2 =
n∪

i=1

φ(Fi), and R2 =
m∪
i=1

φ(Ri).

We prove that for any F ∈ F1 with basic rectangle R ∈ R1 and basic edge e, the
triangulation can be perturbed so that all triangles in φ(F )∪φ(R), except the opposite
triangle with respect to e (in φ(F )), become or remain acute. Let F have vertices a, b, c
and basic edge bc, and let n be the midpoint of bc, as shown in Fig. 3.

a

b c

p
m

n

R

Fig. 3

We can slide n slightly in direction
−→
nb so that both mnp and pnc become acute

triangles while all triangles in φ(R) remain acute. Then we slide n slightly in direction
−→
ba so that mbn becomes acute while mnp, pnc and all triangles in φ(R) remain acute.

Let ei denote the basic edge of Fi ∈ F1 (i ∈ {1, ..., n}). The third step consists
of converting the triangulation T2 into T3 by applying the sliding described above to
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each φ(Fi). After Step 3, we know that in each φ(Fi), only the opposite triangle with
respect to ei is not changed into an acute triangle. We denote by φ3(Fi) the set of four
triangles in T3 resulting from φ(Fi). There remain exactly n right triangles in T3, one
in each of φ3(Fi). The case that F ∈ F1 has no adjacent right triangle is easily treated.
(Two triangles of a triangulation are adjacent if they share a common edge.) Let Fi

and Fj be two adjacent triangles in F1. If they have a common leg [hypotenuse], then
we call them Type I [II]; otherwise, we call them Type III, see Fig. 4.

(a) Type I (b) Type II (c) Type III

Fig. 4: Three kinds of adjacent triangles in F1.

Yuan then shows with a case-by-case analysis of the three possible Types I, II, III
(which we do not reproduce in detail here), that for any two adjacent triangles Fi and
Fj in F1, we can transform all the triangles in φ3(Fi) ∪ φ3(Fj) into acute triangles,
leaving unchanged all other triangles in T3 − (φ3(Fi) ∪ φ3(Fj)). This completes the
proof.

In [57] Maehara had also proved the existence of an acute triangulation for any
polygon on the basis of the existence of a non-obtuse triangulation. At the same time,
he gave the upper bound 2 ·65N for the number of triangles in the acute triangulation,
where N denotes the number of triangles in the existing non-obtuse triangulation.
Refining Maehara’s method, Yuan was able to considerably improve the factor from
2 · 65 to 24 in [76]. This is easy to show by using the above discussion.

Let T be a non-obtuse triangulation of a polygon, and let ν1 [ν2] denote the number
of all acute [right] triangles in T . Thus N = ν1 + ν2. Note that |S1| = 4ν1, |R1| = ν2,
and |F1| = 2ν2 in T1. We have |T2| = 4(|S1| + |F1|) + 16|R1| = 16ν1 + 24ν2 =
16(ν1 + ν2) + 8ν2 ≤ 24N . This implies |T3| = |T2| ≤ 24N .

In her thesis [77], Yuan was able to slightly improve her own result (presented
above).

Theorem 2.1.2 (Yuan [77]). If a polygon can be triangulated into N non-obtuse
triangles, then it can be triangulated into at most 22N acute triangles.

Moreover, Yuan [76] established a concrete upper bound for the size of a non-
obtuse triangulation of an n-gon, obtaining N ≤ 106n− 216 on the basis of the circle
packing method introduced in [11]. Combining Theorem 2.1.2 and the last sentence,
one obtains the following result, which gives the best known asymptotic bound for
acutely triangulating polygons.

Theorem 2.1.3 (Yuan [77]). Every n-gon admits a triangulation into at most
22 · (106n− 216) acute triangles.
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2.2. Mesh generation algorithms

Mesh generation refers to finding a triangulation for which the domain is specified,
being typically a polygon (admitting holes) or a polyhedral surface. We already men-
tioned that mesh generation applications require that the angles not be too flat or
very sharp; for motivation see [5] or [32]. The upper bound of 90◦ is of special interest
in mesh generation applications, as it necessarily yields a Delaunay triangulation. (A
planar triangulation T with vertices P is a Delaunay triangulation [20] if no vertex in
P lies inside the circumcircle of any triangle in T .) Additionally, non-obtuse meshes
provide matrices with desirable numerical properties (for details, see [6]). Although its
focus is not on acute triangulations, an excellent survey on algorithms for generating
triangulations is [9]. We give here only a short overview.

In 1988, Baker, Grosse, and Rafferty [6] published the first provably correct algo-
rithm for constructing non-obtuse triangulations of polygons. However, this algorithm
gives no size guarantee. Therefore, the output size may be arbitrarily large.

Four years later, Bern and Eppstein [8] provided an algorithm creating polynomial-
size non-obtuse triangulations of n-gons (admitting holes), which runs in O(n2) time.
Bounding all angles above by 90◦ is best possible for a polynomial-size triangulation,
in the sense that any smaller fixed bound would require the number of triangles to
depend not only on the size of the input, but also on the ratio between shortest height
and longest side of the triangles allowed. See also [10], but note that this primarily
addresses the triangulation of point sets.

In the same year, Melissaratos and Souvaine [61] presented an algorithm for con-
structing non-obtuse triangulations of polygons (admitting holes), using the results
from [10] – note that earlier versions of [10] appeared since 1990. The special feature
of this algorithm is that it can vary the level of refinement.

Also in 1992, Edelsbrunner, Tan, and Waupotitsch [23] gave an algorithm running in
O(n2 log n) time, which, given a constraint set of points and line-segments in the plane,
yields a triangulation that minimizes the maximum angle (without adding points). If
an acute triangulation exists, then this algorithm finds it. See also [7], where it is
shown how to construct triangulations that minimize the maximum angle.

The “quadtree algorithm” is a useful tool in finding non-obtuse triangulations; see
e.g. [31]. It involves a recursive partition of a region of the plane into axis-aligned
squares. One square, the root, covers the entire region. A square can be divided into
four child squares, by splitting it with horizontal and vertical line segments through
its centre. The collection of squares then forms a tree, with smaller squares at lower
levels of the tree, the quadtree.

Based on the quadtree approach, Bern, Eppstein, and Gilbert published in [10] the
following important algorithms. The first algorithm, given n points in the plane, yields
a triangulation of the convex hull of the n points such that (i) the n points are vertices
of the triangulation and (2) all angles are larger than some constant. Additionally, it
can be modified (at a complexity cost) so that it also yields a non-obtuse triangulation.
The second algorithm, given n points in the plane, provides a non-obtuse triangulation
in linear time. To achieve acute triangulations, one may (i) modify the first algorithm
so that all angles measure between 36◦ and 80◦, or (ii) modify the second algorithm,
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which yields an acute triangulation. However, the angles then may be arbitrarily close
to 90◦.

In 1995, an interesting algorithm based on circle packings was published by Bern,
Mitchell, and Ruppert [11], yielding non-obtuse planar triangulations in O(n) time.

In 2002, Maehara [57] showed how to acutely triangulate a planar domain in O(n)
time and provided a method to modify a non-obtuse triangulation in order to obtain
an acute one. He also gave a short proof that one can triangulate a polygon into right
triangles.

Yuan [76] – based on [11] – published in 2005 her already mentioned, concrete upper
bounds (improving results in [57]) for the number of triangles used in the triangulation
of a polygon.

Fig. 5: Meshes of Lake Superior. The left figure shows the mesh constructed in [28], while

the right figure depicts the improved mesh from [72], where the number of angles close to

90◦ has been dramatically reduced. Reproduced from:

E. VanderZee, A. N. Hirani, D. Guoy, and E. A. Ramos. Well-centered triangulation. SIAM J. Sci.

Comput. 31 Iss. 6 (2010) 4497–4523. Copyright c⃝2010 Society for Industrial and Applied

Mathematics. Reprinted with permission. All rights reserved.

We also mention the recent results by Erten and Üngör [28], and by VanderZee,
Hirani, Guoy, and Ramos [72] (see Fig. 5). In the former, which appeared in 2007, the
authors present a variant of a Delaunay refinement algorithm for acute triangulations.
In the latter, published in 2010, an iterative algorithm is presented that transforms
a given planar triangle mesh into an acute one by moving the interior vertices while
keeping the connectivity fixed. The authors’ approach is based on minimizing a certain
energy, and their algorithm appears to be the first known strategy for acuteness that
may generalize well to higher dimensions.

2.3. Upper bounds for n-gons

As mentioned in the introduction, concrete upper bounds for the size of acute trian-
gulations have always attracted much interest, especially for basic geometrical objects
such as polygons with few vertices. Since the Burago-Zalgaller Theorem from [14] men-
tioned in the introduction provides no further insight, other more constructive methods
had to be developed. We will give in the following an account of the best known bounds
(few are optimal) depending on the number of vertices of the polygon.

The problem of finding the exact minimum size of the acute triangulation of a given
polygon had one of its origins in a problem of Stover reported in 1960 by Gardner in
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his Mathematical Games section of the Scientific American (see [33] and [34]). Stover
asked whether a triangle with one obtuse angle can be cut into smaller triangles, all of
them acute (a dissection!). By sheer coincidence, in the same year, Goldberg proposed
the same problem in the American Mathematical Monthly (E1406, see [37]). Replying
to the problem proposed by Goldberg, Manheimer [60] produced in 1960 a solution,
which happens to be not only a dissection, but also a triangulation. Among the solvers
we find Knuth and Federico (independently obtaining the result). The latter gave an
analysis of the problem based on Euler’s formula. Also Burago and Zalgaller gave –
unknowingly – in [14] the same answer in the same year, 1960: any obtuse triangle can
be triangulated into 7 triangles, and this is best possible.

In the same busy year of 1960, Lindgren [54] described an acute triangulation of
the square (see Fig. 6), proving that it can be done with 8 triangles and that this is
optimal – Federico solved this independently in the same year. In 1966, Gardner also
gave a construction, which he reports in one of his mathematical columns (reprinted
in [35]), saying: “For days I was convinced that nine was the answer; then suddenly I
saw how to reduce it to eight”. We remark that, in fact, Gardner was trying to find
dissections of the square, and it happened that his configuration on eight triangles is a
triangulation. If he were looking for triangulations, this would have contradicted the
following matter.

Cassidy and Lord [15] continued the investigations of acutely triangulating the
square, publishing their results in 1980. They gave an alternative proof of the min-
imality (and combinatorial uniqueness) of the Federico-Lindgren construction on 8
triangles. They also showed that there is no triangulation consisting of exactly 9 tri-
angles, and proved that there exist acute triangulations of the square with k triangles
whenever k ≥ 10.

Fig. 6: The combinatorially unique triangulation of the square into 8 acute triangles

(the purpose of the semicircles is to help check acuteness).

Eppstein [25] discusses a slightly different problem, posed initially by Tromp in
1996. How do we minimize the maximal angle? For the solution using 8 triangles, he
found a placement of the vertices in which the maximum angle is only about 85◦ and
asked if more triangles would achieve an even better bound. Eppstein also produced
a triangulation requiring 14 triangles, with all angles measuring 45◦, 54◦, 63◦, or 72◦.
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This was motivated by Tromp’s question and a result of Gerver [36]. Gerver showed
how to compute a dissection (not a triangulation!) of a polygon with no angles larger
than 72◦, assuming all interior angles of the input measure at least 36◦.

A different approach appeared in 2000, when the subject was rediscovered and
treated in a broader manner. Since then, many advancements have been made. Hangan,
Itoh, and Zamfirescu [38] proved several results and, among other things, generalized
the Federico-Lindgren result:

Theorem 2.3.1 (Hangan, Itoh, and Zamfirescu [38]). Every rectangle can be tri-
angulated with 8 acute triangles, and this is the best possible estimate.

The above result uses (combinatorially) the same construction as shown in Fig. 6,
and already Gerver [36] pointed this out, albeit parenthetically. Yuan [77] studied
triangulations of rectangles with all angles in the triangulation smaller than π/2 and
larger than some ε > 0. Let δT denote the smallest angle occurring in a given trian-
gulation T . Yuan [77] showed that the square admits an acute triangulation T with
|T | = 14 and δT = π/4, thus independently reproving the aforementioned result by
Eppstein [25]. Jia, Yuan, Zamfirescu and Zamfirescu [48] proved that the square ad-
mits a balanced triangulation (i.e. δT > π/6) of size 11. Both bounds are shown to be
best possible. For further results on rectangles we suggest consulting [77, pp. 69–74];
for results concerning balanced triangulations, see [48].

Theorem 2.3.3 (Yuan [79]). Every trapezoid that is not a rectangle admits an
acute triangulation of size at most 7.

By Theorems 2.3.1 and 2.3.3 one obtains a characterization of the rectangle via
acute triangulations. In 2000, Maehara [56] investigated acute triangulations of (not
necessarily convex) quadrilaterals and showed the following.

Theorem 2.3.2 (Maehara [56]). Every quadrilateral admits an acute triangulation
of size at most 10, and this is best possible

Maehara also showed that any convex quadrilateral can be triangulated with at
most 9 acute triangles; it was unknown whether this bound is optimal, as all known
examples required at most 8 triangles (see Problem 1 in Section 4 – this was answered
recently by Cavicchioli, see the Note at the end of this survey). We continue by studying
pentagons.

Theorem 2.3.4 (Yuan [78]). Every pentagon can be triangulated into at most 54
acute triangles.

It is interesting to notice the following difference between quadrilaterals and pen-
tagons. While for quadrilaterals the maximum amount 10 is needed only in certain
cases when the quadrilateral is not convex, all non-convex pentagons can be trian-
gulated with at most 21 triangles (see Lemma 3.2 in [78]), and the above bound 54
emerges from the proof in one of the cases when the pentagon is convex! However, it
seems unlikely that this bound is tight.
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For convex n-gons with 6 ≤ n ≤ 56, the best upper bounds are given by the
following result.

Theorem 2.3.5 (Zamfirescu [84]). If P is a convex n-gon with n ≥ 6, then P
admits an acute triangulation of size at most an, where

an =


2

3
n3 + 2n2 − 65

3
n+ 20 for even n

2

3
n3 + 2n2 − 89

3
n+ 68 for odd n.

For n ≥ 57 (in the non-convex case for all n ≥ 6), the best known bound remains
that given by Theorem 2.1.3.

2.4. Dissections

We now discuss dissections of polygons into triangles the interior angles of which satisfy
certain conditions; this summary is not exhaustive, and gives only a glimpse into the
topic. Evidently, any triangulation is a dissection (but not vice-versa), whence all
results we have seen in Sections 2.1 through 2.3 are fully applicable. Note that in
the first paragraphs of Section 2.3 one clearly sees that this line of research treated
dissections, which, in some cases, happened to be triangulations! Most importantly, we
once more summon the Burago-Zalgaller Theorem [14], which provides the existence
of dissections of polygons (admitting holes or not admitting holes) and polyhedral
surfaces into acute triangles.

Hoggatt and Denman [40] answered Goldberg’s problem E1406 [37] by dissecting
an obtuse triangle into acute isosceles triangles, which is to our knowledge one of the
first results on dissecting polygons into acute isosceles triangles.

Theorem 2.4.1 (Hoggatt and Denman [40]). An obtuse triangle abc can be dis-
sected into 8 acute isosceles triangles. If ∠abc > 90◦, ∠abc − ∠cab < 90◦, and
∠abc− ∠bca < 90◦, then only 7 are needed.

We next consider dissections of polygons into acute triangles (or with even stronger
angle conditions) in general and provide a short summary of the technically complex
result of Gerver [36]. He states necessary conditions on the partitions of the vertices of a
given polygon in order to guarantee an upper bound α on the largest occurring interior
angle within all triangles in the dissection (where the discussion for π/3 ≤ α < 2π/5
interests us). Gerver goes on to conjecture that these conditions are also sufficient. As
in many results of Sections 2.3 and 3, Euler’s formula plays a role (here for regular
polygons). Gerver also gives results on irregular polygons, by extending his work on
regular polygons using Riemann’s mapping theorem.

In a different frame, Kaiser [49] proved the existence of dissections of polygons in
Euclidean, elliptic, and hyperbolic space. For convex polygons (Euclidean and non-
Euclidean) he established a function that yields the minimal number of acute triangles
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one requires, given the number of vertices of the polygon and non-acute angles. Kaiser
also determined that the sphere [elliptic plane] admits a dissection into 20 [10] acute
triangles and that both bounds are optimal.

2.5. Acute triangles in planar graphs

There have recently been several interesting results in geometric Graph Theory that
deal with acute triangles. Now, finite topological triangulations of the plane are viewed
as planar graphs. These may also be seen as maximal planar graphs, which are graphs
to which no edge may be added without losing planarity. In this context, an acute
[non-obtuse] almost-triangulation is a planar graph embedded in the plane such that
all faces are acute [non-obtuse] triangles, with the exception of the unbounded face.
We remark that the authors initiating this study used the term pseudo-triangulation,
which in Computational Geometry has a completely different meaning. Since this
survey concentrates on geometric aspects, we permit ourselves to change the term.

A few definitions are in order. In a planar graph, an enclosing cycle is a cycle in
whose interior there is at least one vertex. A separating cycle of a graph G is a cycle
whose deletion disconnects G.

Kaneko, Maehara, and Watanabe [50] showed that an almost-triangulation consist-
ing of m triangles can be transformed into a straight-line embedding in which at least
⌈m/3⌉ triangles are acute. It is well known that all planar graphs can be embedded
into the plane such that every edge is a Euclidean segment [75]. Such an embedding is
sometimes called a planar straight-line graph. Kaneko, Maehara, and Watanabe also
showed that any acute almost-triangulation with no inner vertices admits a straight-line
embedding.

A few years later, Maehara proved the following results.

Theorem 2.5.1 (Maehara [58]). An almost-triangulation admits an acute straight-
line embedding in the plane if and only if the triangulation has no enclosing cycle of
length at most 4.

Theorem 2.5.2 (Maehara [58]). An almost-triangulation with five or more vertices
admits a non-obtuse straight-line embedding if and only if
(i) the set of vertices of degree 4 not belonging to the boundary of the unbounded face
contains no adjacent pair, and
(ii) the graph obtained by deleting the vertices of degree 4 not belonging to the boundary
of the unbounded face has no separating cycle of length at most 4.

In 2005, two closely related results appeared on the subject. Kawarabayashi et
al. [51] showed that every 4-connected triangulation with m bounded faces other than
the octahedron can be drawn in the plane so that at least (m + 3)/2 faces are acute
triangles; furthermore, the bound is sharp. Koyama and Nakamoto [53] proved that the
aforementioned statement holds under similar conditions, weakening 4-connectedness
to minimum degree at least 4.
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3. Surfaces

3.1. Platonic surfaces

A convex surface is the boundary of a compact convex set in R3 with non-empty
interior. Ellipsoids, (bounded) cylinders, (bounded) cones, and polytopes are examples
of convex surfaces. We shall call the boundaries of the five Platonic solids Platonic
surfaces. They have been investigated extensively. Until recently, the sizes of their
minimal triangulations were known except for the dodecahedron; now this case has also
been solved [48]. There are two facets in every proof underlying each of these theorems.
First, for the geometric construction, one provides a triangulation, acute or non-obtuse,
with as few triangles as possible. In some cases, the construction is based on a prior
result: one obtains for instance an acute triangulation of the boundary of the cube by
using three acutely triangulated rectangles [38], where each rectangle can be acutely
triangulated as in Theorem 2.3.1. Combinatorially, this coincides with the construction
provided in Fig. 6. Proving correctness is done through a somewhat tedious case-
by-case analysis, dealing with every angle in part. Second, the minimality of (or at
least a good bound on) the number of triangles that are used in the construction is
proved. This involves combinatorial techniques (like Euler’s formula) and often further
geometrical arguments. We will illustrate this in the case of the cube.

Let us remark that all results within this section can be improved to balanced
triangulations (which, we recall, are acute triangulations having only triangles featuring
angles greater than π/6) without requiring more triangles [48]. This is done by shifting
vertices of the acute triangulation until the desired lower bound (i.e. π/6) is attained
or by completely new constructions. We now list the results on acute triangulations of
Platonic surfaces in their natural order, giving the simple cubic case special treatment
– we do not mention the tetrahedral and octahedral case, as their edges directly provide
a minimal triangulation.

Theorem 3.1.1 (Hangan, Itoh, and Zamfirescu [38]). The boundary of a cube
admits an acute triangulation with 24 triangles, and this is best possible.

An acute triangulation can be seen in Fig. 7. If we choose there α = π/6, we obtain
a balanced triangulation.

We now prove, following [38], that every acute triangulation of the (boundary of
the) cube S requires at least 24 triangles. Since each vertex of the cube has curvature
π/2, every triangle on S containing it in its interior has as sum of angles at least 3π/2
and therefore cannot be acute. Since our triangulations must be geodesic, as defined
in the introduction, and geodesics do not pass through vertices of S, every vertex of
the cube must be a vertex of any acute triangulation. Suppose an acute triangulation
T has at least 15 vertices. Each vertex in T that is also a vertex of S has degree at
least 4, as the total angle around it is 3π/2. Each of the other p ≥ 7 vertices has
degree at least 5, the total angle there being 2π. Thus, we have at least 32+ 35 edges,
counted twice. The number of edges, counted twice, equals 3t, where t is the number
of triangles in T . Hence t is at least 24 (this number must be even).

Suppose now an acute triangulation T ′ has at most 14 vertices. Consider the four
vertices {a, b, c, d} of a face F of S. Clearly, some edge must start in a and go through
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α

Fig. 7: One of several combinatorially distinct acute triangulations of the

unfolded boundary of a cube with 24 triangles.

the interior of F . If no vertex of T ′ is interior to F , then the edge ends outside the
interior of F , and either from b or from d no edge can start and go through the interior
of F . Hence, each face of S contains a vertex of T ′ in its interior, in fact precisely one
vertex, as T ′ has at most six vertices different from those of the cube. This vertex must
then be joined by an edge with each of the four vertices of the face. Indeed, suppose
the vertex v interior to some face abcd is not joined with a. Let ae be the edge of
the triangulation starting at a and going through the interior of the face abcd. Then
v must be separated by ae from b or d in abcd. Now a non-acute angle appears at b
or d, and we obtain a contradiction. Let the faces F1 and F2 have the common edge
ab. Let v1 and v2 be the vertices of T ′ interior to F1 and F2, respectively. Obviously,
if ab is an edge of T ′, then v1v2 is not, and if v1v2 is an edge, then ab is not. However,
one of the two edges must be present to prevent a quadrilateral in the triangulation.
Hence, we may again count the edges, once each, by counting 4 for each vertex of the
triangulation interior to some face, plus an edge for every edge of the cube. A priori
there might be other edges as well. So, the number of edges is at least 24 + 12. This
means that 3t ≥ 72, whence t ≥ 24. This completes the proof. It is easy to construct a
non-obtuse triangulation of the boundary of the cube using only 4 triangles, and that
this is smallest possible is easily seen, too.

We mention another interesting result concerning acute triangulations on the sur-
face of the cube. A triangulation of a polyhedral surface P (i.e. the boundary of a
polyhedron) is proper [59] (or planar [43]) if all edges of P appear in the triangulation,
possibly in subdivided forms. Itoh and Maehara [43] proved that the surface of the
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cube admits a proper acute triangulation of size 56, that this is best possible, and that
their construction is combinatorially unique. Going further in this direction, Maehara
[59] proved (by using the main result from [65]) that every polyhedral surface admits
a proper acute triangulation.

Two remarks are in order: (i) [59] contains a solution to an open question raised
by Saraf [65]; she used Maehara’s method from [57] to transform her proper non-
obtuse triangulation into an acute one, but during this process the triangulation lost its
attribute of being proper. (ii) Maehara’s approach to construct proper triangulations
is closer to applications in numerical analysis, as triangulations with triangles spanning
multiple facets are rarely used. This is due to the fact that the linear approximation
used in the application ought to accurately reflect the geometry of the underlying
surface.

Theorem 3.1.2 (Jia, Yuan, Zamfirescu, and Zamfirescu [48]). The regular dodeca-
hedral surface admits an acute triangulation with 12 triangles, and this is best possible.

Fig. 8: The acute triangulation of the unfolded dodecahedral surface with 12 triangles

constructed in [48], where the thin segments denote the edges of the dodecahedron, while

the bold segments are the edges of the triangulation.

Fig. 8 illustrates the result from [48]. In fact, the theorem appearing in [48] is a
stronger result than the one cited above, as the triangulation of size 12 obtained is not
only acute but also balanced. For the non-obtuse case we refer to [47], where it was
shown that there exists a non-obtuse triangulation of the regular dodecahedral surface
with 10 triangles and that this is best possible.

Theorem 3.1.3 (Itoh and Zamfirescu [46]). The regular icosahedral surface admits
an acute, respectively non-obtuse, triangulation with 12, respectively 8, triangles, and
these bounds are best possible.
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There also exists a balanced triangulation of the regular icosahedral surface of size 12
[48]. For non-regular polyhedra nothing is known (except for existence by the Burago-
Zalgaller Theorem [14]). Even for the class of all tetrahedral surfaces no concrete upper
bound was established so far; see Problem 5 in Section 4.

3.2. Double planar convex bodies

Let us start off with a simple observation. Two congruent planar convex bodies K and
K ′ can be identified along their (entire) boundaries in accordance with the congruence,
creating a surface S = 2K, the double of K. This is obviously homeomorphic to the
sphere. K and K ′ are the sides of 2K. Such a surface 2K is also called a degenerate
convex surface because it is the limit of a sequence of convex surfaces. Even this case
is not settled in regard to acute (or even non-obtuse, for that matter) triangulations,
i.e. it is unknown whether acute triangulations of such surfaces exist. In fact, results
are spread so thinly that we can give an exhaustive list, which follows shortly.

In order to give triangulations of double polygons, we note that in general one
cannot simply triangulate – acutely for instance – a polygon and then apply this same
triangulation to the copy, as a situation might occur where two triangles have two edges
in common, which contradicts the definition of a triangulation! Even if it is possible to
simply copy the triangulation, this is often not desirable, as better configurations (i.e.
triangulations of smaller size) might exist.

We now give a short example from [83] that aims to clarify what an acute triangu-
lation of a double triangle is. Consider the congruent copies T1 and T2 of an equilateral
triangle as faces of our double triangle T . T is the (degenerate) convex surface we want
to triangulate. Trisect the angles of T1. The pairs of trisectors closer to each side of T1

meet at the vertices of an equilateral triangle abc. The bisectors of T2 meet at d. Then
the trisectors of T1, the bisectors of T2, the sides of abc and the segments ad, bd, cd
(which cross the boundary of T1) determine an acute triangulation of T with 10 trian-
gles. Many double triangles not too different from T can be acutely triangulated in the
same combinatorial manner. However, the problem we want to solve is this: Find the
minimal integer N such that every double triangle can be triangulated with at most
N acute triangles. We will see that N is not 10. The following is to our knowledge the
first result on this topic (see Fig. 9).

Theorem 3.2.1 (Zamfirescu [83]). Every double triangle can be triangulated with at
most 12 acute triangles. There exist triangles for which no smaller acute triangulation
is possible.

Theorem 3.2.2 (Yuan and Zamfirescu [80]). Every double convex quadrilateral
admits an acute triangulation of size at most 20.

Theorem 3.2.3 (Yuan [78]). Every double convex pentagon admits an acute tri-
angulation of size at most 76.

For double convex n-gons with 6 ≤ n ≤ 56, the best bounds are given by 2an,
where an is defined in Theorem 2.3.5. For all larger n, the best known upper bound,
2 · 22 · (106n− 216), can be found in Yuan [77].
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Fig. 9: Triangulating a double triangle T with 12 acute triangles, labeled 1 through 12. T is

formed by gluing two triangles T1 and T2 along their boundaries. (The edges e1 and e2 are

identified with their respective counterpart.) T1 and T2 are the sides of T . The triangles 3,

4, 9, and 10 have interior points on both sides of T , whereas the remaining triangles of the

triangulation lie on precisely one of the two sides of T .

We now consider the non-polygonal case. Let K ⊂ R2 be a convex body with the x-
axis and y-axis as orthogonal axes of symmetry, and C2-boundary bdK. Furthermore,
let (a, 0) and (0, b) be points on bdK with 0 < b ≤ a. Now let A be the arc {(x, y) ∈
bdK : x, y ≥ 0}; we notice that A determines K. We can now formulate the following
result.

Theorem 3.2.4 (Yuan and Zamfirescu [82]). If the curvature of A is monotone
(i.e. non-increasing or non-decreasing) or bounded above by 2/b, then 2K admits an
acute triangulation with at most 72 triangles.

Thus, any double ellipse admits a triangulation with 72 acute triangles.
We now present an interesting class of surfaces which may be investigated regarding

acute (or non-obtuse) triangulations. This requires a theorem by A. D. Alexandrov,
which has an interesting history, as described by O’Rourke [62].

Alexandrov published his well-known Gluing Theorem in [1] and included it in his
book from 1950 on convex polyhedra [2], unbeknownst to most Western mathemati-
cians, as both publications appeared in Russian and in Russian only. The book was
soon, in 1958, translated into German [3], but only in 2005 did an English translation
of this great work appear [4].

A vertex of an abstract polyhedral surface has non-negative curvature if around it
the angle sum is not greater than 2π. The Gluing Theorem has the following polyhedral
version.

Theorem 3.2.5 (Alexandrov [1]). Every polyhedral surface with all vertices of
non-negative curvature folds to a convex polytope.
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Next, we state a corollary of the Gluing Theorem.

Corollary 3.2.6. Two planar convex bodies of equal perimeter can be identified
along their boundaries, according to any isometry between the boundaries, creating a
(possibly degenerate) convex surface.

When the two bodies are congruent, and the boundary isometry respects the global
isometry, we get the case of double planar convex bodies. Not only can we consider
isometries between the boundaries not in accordance with the global isometry, we
may even pick two different bodies (imagine gluing a square and a circle of the same
perimeter). We point out that in the recent book [21] by Demaine and O’Rourke, the
objects from 3.2.6 are called D-forms. They also study a simpler case, so-called pita-
forms : these are objects obtained by taking a planar convex body and gluing one half
of its perimeter to the other half. See [22] for a recent discussion on pita-forms. We
may now ask for acute or non-obtuse triangulations on D-forms or pita-forms; here,
nothing is known.

3.3. Riemannian manifolds

On Riemannian manifolds there are the following important existence results (which
concern themselves with the stronger notion of almost equilateral triangulations), see
[67] and [19], where the latter yields the following.

Theorem 3.3.1 (Colin de Verdière and Marin [19]). Let ε > 0.
(i) If X is the sphere S2 (a torus) we can triangulate (X, g) for any metric g, such that
all angles are between 3π/10− ε and 2π/5+ ε (π/3− ε and π/3+ ε), and these bounds
are best possible.
(ii) If (X, g) is an orientable compact surface of genus at least 2, we can triangulate
(X, g), such that all angles are between 2π/7− ε and 5π/14 + ε, and these bounds are
best possible.

As far as we know there are no papers on a constructive approach, and no existent
technique indicates how one might estimate the concrete number of triangles needed
to acutely (or non-obtusely) triangulate a Riemannian surface in general.

We now turn from this very general frame to several classical geometric objects.

3.4. Sphere, flat Möbius strips, flat tori, and flat Klein bottles

Acute triangulations (even balanced ones, as is easily seen) of the sphere are readily
available, and one cannot do better than 20 concerning the size of the triangulation:
Brinkmann and McKay [13] enumerate the triangulations of the sphere such that all
vertices have degree at least 5. There is (combinatorially) exactly one such triangu-
lation into 20 triangles (the vertices of which can be placed such that it is acute),
and none into 22. Nonetheless, investigations were made regarding what other acute
triangulation sizes may occur, revealing the following.
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Theorem 3.4.1 (Itoh [41]). The sphere admits acute triangulations of all even
orders greater than or equal to 20, excluding 22.

We note that in [41] the cases 28 and 34 remained open, but were resolved later by
the same author, yielding the result above. Another result concerning acute triangu-
lations on spheres is the following.

Theorem 3.4.2 (Itoh and Zamfirescu [45]). Every spherical geodesic triangle with
angles smaller than π can be triangulated with at most 10 acute triangles, and this is
the best possible.

Flat Möbius strips have also been investigated. These are obtained from a flat
rectangle R with sides of length 1 and α > 0, by identifying pairs of points symmetric
about the centre of R and lying on the sides of length 1. Denote this Möbius strip
by MR. For an example, see Fig. 10. There, the sides of length 1 are a1b1 and b2a2
(these are being identified as explained above to form the Möbius strip) and the sides
of length α are a1b2 and b1a2.

Theorem 3.4.3 (Yuan and Zamfirescu [81]). Every flat Möbius strip admits an
acute triangulation of size at most 9, and this upper bound is best possible.

The size of an optimal triangulation of MR depends on α. For α ≥
√

5/3 =

1.29099... this size is 5 (see below for a proof); for 1 < α <
√

5/3 the (not proven as
optimal) construction presented in [81] requires 8 triangles, and only for all α ≤ 1, 9
triangles are indeed needed.

To give an insight into the geometric aspect of the proofs of many results given in
Sections 2.3 and 3, we now show that if α ≥

√
5/3, then the Möbius strip MR can be

triangulated into 5 acute triangles, and no smaller acute triangulation is possible. We
follow here [81]. The relative interior of a segment xy ⊂ R2, abbreviated with (xy), is
the set {λx+ (1− λ)y : 0 < λ < 1}.

Case 1. α ≥
√
3. Let e,m ∈ a1b2 in R, such that ∥b1 − e∥ = ∥b2 − e∥ and

∥a1 −m∥ = ∥a2 −m∥ (see Fig. 10).

Fig. 10

Clearly, e ∈ (a1m) in R. Let f be the orthogonal projection of e on b1a2 in R; then
∠mfa2 < π/2. By construction, it is easy to check that the line-segments a1b1, a1e,
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b1e, b1f , em, ef , mb2, ma2 and fa2 are all segments in MR. Furthermore, since

∥m− f∥ =

√
α2 + 1

α
, ∥b1 − f∥ = ∥m− b2∥ =

α2 − 1

2α
and α ≥

√
3,

we have
∥m− f∥ ≤ ∥m− b2∥+ ∥b1 − f∥ ≤ ∥m− c2∥+ ∥c1 − f∥

for any point ci ∈ aibi (c1 and c2 are identical), which implies that the line-segment
mf is also a segment in MR. Since ma2 has length

α2+1
2α

, the segment mf is not longer
than ma2, whence ∠ma2f ≤ π/3.

Thus MR can be triangulated into 5 non-obtuse geodesic triangles, as shown in
Fig. 10. Now we replace in this triangulation the vertices f and a2 by two vertices
on the side edge fa2, close to f , respectively a2. In this manner we obtain an acute
triangulation of MR of size 5.

Case 2.
√

5/3 ≤ α <
√
3. Let e1 ∈ a1b2 in R, such that ∥b1 − e1∥ = ∥b2 − e1∥.

The Möbius strip MR is the isosceles trapezoid e1b1e2b2 ⊂ R2, see Fig. 11, where e1
coincides with e2 in MR.

f
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Fig. 11: Thick line-segments denote edges of the triangulation

Let f be the midpoint of the side edge e1b2, and let g, h ∈ b1e2 in R2 be such that
∥e1 − g∥ = ∥e2 − g∥ = ∥b1 − h∥ = ∥b2 − h∥. Since ∥b1 − e2∥ − (∥b1 − g∥+ ∥h− e2∥) =
3−α2

2α
> 0, g ∈ (b1h). From our construction, it is easy to check that the line-segments

b1e1, e1f , e1g, b1g, gh, fb2, b2h, he2 ⊂ R2 are indeed segments in MR. Since

∥f − g∥ =

√
α4 + 10α2 + 9

4α
, ∥f − b2∥+ ∥b1 − g∥ =

5α2 − 3

4α
and α ≥

√
5/3,

we have
∥f − g∥ ≤ ∥f − b2∥+ ∥b1 − g∥ < ∥f − e1∥+ ∥e2 − g∥.

Let mi be the midpoint of eibi ⊂ R2 (i ∈ {1, 2}). m1 and m2 coincide in MR. If
n1 ∈ b1m1, then

∥f − b2∥+ ∥b1 − g∥ = ∥f ′ − b1∥+ ∥b1 − g∥ ≤ ∥f ′ − n1∥+ ∥n1 − g∥

where f ′ = f in MR (see Fig. 11). If n1 ∈ e1m1, then

∥f − e1∥+ ∥e2 − g∥ = ∥f ′′ − e2∥+ ∥e2 − g∥ ≤ ∥f ′′ − n2∥+ ∥n2 − g∥,
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where f ′′ = f and n2 = n1 in MR (see Fig. 11). Hence fg ⊂ R is a segment in MR.
Analogously, fh ⊂ R is also a segment in MR. Furthermore, since

√
5/3 ≤ α <

√
3,

we have

tan
1

2
∠gfh =

3− α2

4α
< 1 and tan

1

2
∠b1e1g =

α2 − 1

2α
< 1.

Thus, all triangles in Fig. 11 are acute. We obtained an acute triangulation of MR of
size 5.

Now let T be an arbitrary acute triangulation of MR with t triangles. If T has
at least one interior vertex, then clearly t ≥ 5. If T has no interior vertex, then we
assume that it has s side vertices. Notice that every side vertex has degree at least 4,
so s ≥ 5. Now denote by e the number of edges of T , and let V (T ) be the vertex set
of T . Since 3t + s = 2e =

∑
x∈V (T ) deg(x) ≥ 4s, we have t ≥ s ≥ 5, which completes

the proof.
Let us turn our attention to flat tori.

Theorem 3.4.4 (Itoh and Yuan [44]). Every flat torus can be triangulated into 16
acute triangles, and there are flat tori requiring 14 acute triangles.

The natural question whether 16 or 14 is the optimal bound remains unanswered.

Theorem 3.4.5 (Itoh [42]). Every flat Klein bottle admits an acute triangulation
of size 16.

We remark that, again, it is unknown whether this bound is optimal; see Problem 4.

4. Open problems

There are many interesting problems of varying difficulty regarding acute triangula-
tions. We select eight such problems; we note that they stem from theoretical ap-
proaches and concern the two-dimensional case. For a better overview of recent trends
and open problems on acute triangulations in applied mathematics, see e.g. [72]. For
a series of intriguing conjectures in higher dimensions, [12] is a good source.

1. Does every convex quadrilateral admit an acute triangulation of size 8? It is
known [56] that convex quadrilaterals may be acutely triangulated using (at most) 9
triangles and that rectangles need 8.

This problem was recently solved by Cavicchioli. Please see the Note at the end of
this survey.

2. Any flat torus can be acutely triangulated with 16 triangles, and in [44] a
flat torus is constructed requiring 14 acute triangles, leaving open the question of the
optimal upper bound.

3. A 72◦-triangulation consists exclusively of triangles the interior angles of which
measure at most 72◦. Is 14 the minimum number of triangles in a 72◦-triangulation of
the square [25]?
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4. Is 16 the optimal upper bound for the size of an acute triangulation of a flat
Klein bottle [42]?

5. Find an upper bound N such that any tetrahedral surface admits an acute
triangulation requiring at most N triangles [85].

6. Does there exist a number N such that every closed convex surface in R3 admits
an acute triangulation with at most N triangles [38]? In view of Corollary 3.2.6, we
propose the investigation of Problem 7, which reveals an interesting special case of
Problem 6.

7. Consider a (possibly degenerate) closed convex surface obtained by gluing two
planar convex isoperimetric bodies, i.e. identifying them along their boundaries. Does
there exist a number N such that every surface obtained in this manner admits an
acute triangulation with at most N triangles?

8. The following problem appeared in [85]. Let (X, ρ) be a metric space. For any
three points a, b, c ∈ X, we say that the angle abc is acute if ρ(a, c)2 < ρ(a, b)2+ρ(b, c)2.
A triple {a, b, c} is a triangle if ρ(a, c) < ρ(a, b) + ρ(b, c) and the other two analogous
inequalities hold. A triangle is acute if all its three angles are acute. A combinatorial
triangulation in X is a finite set of triangles combinatorially equivalent to some usual
triangulation of a closed surface. Such a combinatorial triangulation is acute if all
angles are acute. Let us now formulate two intertwined problems.
(i) Given a metric space (X, ρ), which acute combinatorial triangulations exist in X?
(ii) What is the smallest possible number of acute triangles?

Note. Cavicchioli succeeded in solving Problem 1, see [16]: she showed that every
convex quadrilateral admits an acute triangulation of size 8, and that this is best
possible. In another recent development, Feng and Yuan [30] showed that the boundary
surface of the cuboctahedron can be triangulated into 12 acute triangles, and that
this is best possible. Pambuccian [63] and Hociotă and Pambuccian [39] study acute
triangulations from an axiomatic point of view.
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constructive criticism.
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Enseign. Math., II. Sér. 37 (1991) 201–212. (French)

[19] Y. Colin de Verdière and A. Marin. Triangulations presque équilatérales des sur-
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