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Abstract

Motivated by various applications triangulations of surfaces using

only acute triangles have been recently studied. Triangles and quadri-

laterals can be triangulated with at most 7, respectively 10, acute tri-

angles. Doubly covered triangles can be triangulated with at most 12

acute triangles. In this paper we investigate the acute triangulations

of doubly covered convex quadrilaterals, and show that they can be

triangulated with at most 20 acute triangles.

Recentemente, motivate da varie applicazioni, sono state studiate

le triangolazioni di superfici utilizzando soltanto triangoli acutangoli. I

triangoli e i quadrilateri possono essere triangolati, rispettivamente, con
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al più 7 e al più 10 triangoli acutangoli. I triangoli coperti doppiamente

possono essere triangolati con al più 12 triangoli. In questo lavoro noi

trattiamo le triangolazioni di quadrilateri convessi coperti doppiamente

e mostriamo che tali quadrilateri possono essere triangulati con al più

20 triangoli acutangoli.
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1 Introduction

The problem of producing various kinds of triangulations arises in computer

graphics, physics simulation, and geographical information systems. Most ap-

plications demand not just any triangulation, but rather one with triangles

satisfying certain shape and size criteria. It is generally true that large angles

are undesirable, and a bound of π
2

on the largest angles has special importance.

A triangulation of a two-dimensional space means a collection of (full) tri-

angles covering the space, such that the intersection of any two triangles is

either empty or consists of a vertex or of an edge. A triangle is called geodesic

if all its edges are segments, i.e., shortest paths between the corresponding

vertices. We are interested only in geodesic triangulations, all the members of

which are, by definition, geodesic triangles. An acute (non-obtuse) triangula-

tion is a triangulation whose triangles have all their angles less (not larger)

than π
2
.

What can be said about the size, i.e., the number of triangles, of an acute

triangulation of a given polygon? In 1960, Burago and Zalgaller [3] and, in-

dependently, Goldberg [6] found out that every obtuse triangle can be trian-

gulated into 7 acute triangles, and 7 is the minimum number. As a problem
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of Stover, this also appears in [5]. In 1980, Cassidy and Lord [4] showed that

every square can be triangulated into 8 acute triangles, and 8 is the minimum

number. This remains true for any rectangle [7]. In 2001 Maehara [10] inves-

tigated the acute triangulations of all quadrilaterals (convex or not), showing

that they can be triangulated with at most 10 acute triangles. He also dealt

with arbitrary polygons in [11], and his results have been refined by the first

author [12]. Non-obtuse triangulations have been studied in [1], [2].

In 2000 Hangan, Itoh and Zamfirescu [7] considered the following problem:

does there exist a number N such that every compact surface in R3 admits an

acute triangulation with at most N triangles? Of course, one should estimate

N , if it exists. Indeed, the first compact surfaces to be investigated should be

the convex ones, and among these the polyhedral surfaces play a central role.

In the same year, Hangan, Itoh and Zamfirescu [7] started the investigation of

acute triangulations of all Platonic surfaces (the surfaces of the five well-known

Platonic solids). This was continued in [8] and [9]. At the same time, acute

triangulations of some smooth convex surfaces were also considered, so for

example, the sphere. However, the case of arbitrary convex surfaces is much

more difficult, even for polyhedra with a small number of vertices. For instance,

even the family of all tetrahedral surfaces is far from being easy to treat. A

doubly covered convex set is a (degenerate convex) surface Γd homeomorphic

to the sphere consisting of two planar isometric convex sets, Γ and Γ′, with

boundaries glued in accordance with the isometry. For any point P in Γ, let P ′

denote the corresponding point in Γ′. Even this case is, in full generality, still

quite difficult. In 2004 the second author [13] considered acute triangulations

of doubly covered triangles, and obtained the best estimate 12. In this paper

we continue this task and prove that every doubly covered convex quadrilateral
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admits an acute triangulation of size at most 20.

2 Preliminaries

A polygon Γ is a planar set homeomorphic to the compact disc, having as

boundary bdΓ a finite union of line-segments.

Let T be an acute triangulation of a polygon Γ. A vertex P of T is called

a corner vertex if P is a vertex of bdΓ;

a side vertex if P lies on bdΓ but is not a corner vertex;

an interior vertex otherwise.

We can regard T as a planar graph. Clearly, a side vertex has degree at

least 4 and an interior vertex has degree at least 5.

The following results of Maehara will be used. (The second follows from

the first one.)

Proposition 1. [10] Let ABC be a triangle with acute angles at B and

C, and let P ∈ relintAC. If the angle at A is acute (non-acute), then there

is an acute triangulation of ABC with size 4 (7) such that P is the only side

vertex on AC.

Proposition 2. [10] Let ABCD be a convex quadrilateral with acute angle

at B and non-acute angle at D. Then ABCD admits an acute triangulation

with size at most 9 such that the only vertex of degree less than 3 is B.

3 Main result

We now consider the doubly covered convex set Γd in the case when Γ is a

convex quadrilateral ABCD.
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Fig. 1: Γ is a rectangle

Theorem. Every doubly covered convex quadrilateral admits an acute tri-

angulation with size at most 20.

Proof. If Γ = ABCD is a rectangle, then Γd admits an acute triangulation

with size 8, as shown in Figure 1, where the two ”sides” of Γd are unfolded on

a plane.

Now suppose that Γ is not a rectangle. Then it has at least one acute

corner, say B.

Fig. 2: Acute triangulations of a quadrilateral ABCD

If ∠D ≥ π
2
, then by Proposition 2 Γ admits an acute triangulation T with

size at most 9 [10], in which the only vertex of degree less than 3 is B (Figure
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2). Thus Γd can be divided into at most 18 acute triangles. Notice that this

division is not a triangulation. Choose the vertices F , G of T such that both

BF and FG are edges of T lying in bdΓ. We slightly slide F into the interior of

Γ such that all the triangles in Γ having F as a vertex remain acute, and both

BFF ′ and GFF ′ are acute as well. Thus Γd admits an acute triangulation of

size at most 20.

If ∠D < π
2
, we first prove that Γ can be triangulated into at most 8 acute

triangles such that there are at most 2 vertices with degree 2.

If both triangles ABC and ACD are acute, then clearly Γ can be triangu-

lated into 2 acute triangles, and only B and D have degree 2.

If one and only one of them is acute, we may assume without loss of gener-

ality that the triangle ABC is acute and ∠ACD ≥ π
2
. Let E be the orthogonal

projection of C on the side AD and F be the orthogonal projection of E on

the side AC. Clearly E ∈ relintAD and F ∈ relintAC. By Proposition 1,

ABC can be triangulated into 4 acute triangles such that F is the only side

vertex on AC. Now we slightly slide F in direction opposite to E and E in

direction of A and obtain an acute triangulation of Γ of size 7, in which only

the vertices B and D have degree 2.

If both triangles ABC and ACD are non-acute, we may assume without

loss of generality that ∠ACB ≥ π
2
, ∠CAD ≥ π

2
, and the lines including BA

and CD are parallel or intersect at some point closer to A than to B. Let M

be the orthogonal projection of C on the side AB. Choose N ∈ CD such that

AN and MC are parallel. Then the line-segments AN , MN and CM divide

ABCD into 4 triangles, as shown in Figure 3. Firstly, we slightly slide M

towards A and N towards C such that all triangles become acute. Let H be a

point on MC such that ∠NHC = π
2
. Clearly H ∈ relintCM . By Proposition
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Fig. 3: Both ABC and ACD are non-acute

1, there is an acute triangulation of the acute triangle BMC with size 4 such

that H is the only side vertex lying on MC. After slightly sliding H opposite to

N , we obtain an acute triangulation of ABCD with size 8. Noticing that there

are at most 2 vertices with degree 2 in each triangulation, we can conclude that

Γd admits an acute triangulation with size at most 20.
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